

Global Lung Cancer Academy

Sharing Best Practices to Optimize Patient Care

14 November 2022

Sponsor: Sanofi Oncology & Regeneron

Welcome and Meeting Overview

Corey Langer, MD, FACP

Meet the faculty

CO-CHAIRS

Corey J. Langer, MD, FACP University of Pennsylvania, PA, USA

Benjamin Besse, MD, PhD Institute Gustave Roussy Villejuif, France

FACULTY

Federico Cappuzzo, MD, PhD AUSL della Romagna Ravenna, Italy

Anne-Marie Dingemans, MD, PhD Erasmus Medical Center Rotterdam, the Netherlands

Solange Peters, MD University Hospital of Lausanne Lausanne, Switzerland

Enriqueta Felip, MD, PhD Vall d'Hebron University Hospital Barcelona, Spain

Umberto Malapelle, PhD University of Naples Federico II Naples, Italy

Luis Paz-Ares, MD, PhD University Hospital October 12 Madrid, Spain

Johan Vansteenkiste, MD, PhD University Hospital KU Leuven Leuven, Belgium

Objectives of the program

Discuss current evidence-based practices in the diagnosis and treatment of lung cancer Learn about current genomic testing practices and how these results inform treatment decisions Understand advances made in immunotherapy for lung cancer and how these agents are being used in clinical practice

Gain insights into the latest developments in targeted therapies used for lung cancer

Promote best practice cancer care via the review of clinical patient cases Recognize the major clinical trials underway to further develop treatment in lung cancer

Learn about the regional challenges and differences in lung cancer treatment patterns in Europe

Day 2: Plenary Sessions Monday, 14 November 2022 from 16.00 – 19.15 CET

Time	Title	Speaker
16.00 – 16.10 (10 min)	Session Open ARS questions 	Corey Langer
16.10 – 16.30 (20 min)	Optimizing First-Line Therapy in NSCLC – Integration of Immunotherapy Into Frontline Regimens Optimal use of immunotherapeutic treatment choices in frontline NSCLC 	Luis Paz-Ares
16.30 – 16.50 (20 min)	 Current Immunotherapy Options for Relapsed NSCLC Optimal use of immunotherapeutic treatment choices in relapsed NSCLC including considerations for potential rechallenge, and treatment selection mono vs combination therapy 	Benjamin Besse
16.50 – 17.25 (35 min)	Tumor Board Discussion • Case 1 (10 min) • Case 2 (10 min) • Discussion & Q&A (15 min)	Moderator: Solange Peters Francesca Fusco Luis Angel Leon Mateos All faculty
17.25 – 17.35 (10 min)	Break	
17.35 – 17.50 (15 min)	 ALK Inhibitors in NSCLC Considerations for optimal use in clinical practice in patients with and without brain metastasis 	Enriqueta Felip
17.50 – 18.05 (15 min)	 EGFR Inhibitors in NSCLC Considerations for optimal use in clinical practice 	Johan Vansteenkiste
18.05 – 18.30 (25 min)	 Other Targets in NSCLC Considerations for optimal use of ROS1, NTRK, RET and MET inhibitors in clinical practice 	Anne-Marie Dingemans
18.30 – 19.05 (35 min)	Tumor Board Discussion • Case 1 (10 min) • Case 2 (10 min) • Discussion & Q&A (15 min)	Moderator: Corey Langer May-Lucie Meyer Xander Verbeke All faculty
19.05 – 19.15 (10 min)	Session Close ARS questions 	Solange Peters

1

In which country do you currently practice?

- 1. Austria
- 2. France
- 3. Germany
- 4. Italy
- 5. Poland
- 6. Spain
- 7. The Netherlands
- 8. United Kingdom
- 9. Other country in Europe
- 10.Outside Europe

How would you describe your specialty?

- 1. General oncologist
- 2. Lung oncologist
- 3. General internal medicine
- 4. Pulmonologist
- 5. Fellow
- 6. Other

Do you continue immunotherapy after progression in metastatic NSCLC?

- 1. No, I stop
- 2. Yes, I continue with the same drug
- 3. Yes, but I would consider switching to another immunotherapy
- 4. This completely depends on the situation
- 5. Other

56-year-old male, heavy former tobacco enthusiast (50 pk/yr) presents with cough and pleuritic chest pain. CXR shows L pleural effusion and L hilar mass, confirmed on CT, which also discloses mediastinal LAD and a L adrenal mass measuring 3 cm. Pleural fluid cytology demonstrates adenocarcinoma, TTF1 positive. Cell block is sufficient for NGS testing; this proves positive for *KRAS* G12C mutation. PD-L1 is positive but at low level (10%). Brain MRI proves negative. Patient is treated with the KN-189 regimen (combination pemetrexed, carboplatin, and pembrolizumab) and sustains a PR with resolution of the L pleural effusion and shrinkage in the primary lung mass, mediastinal LAD, and L adrenal lesion. Scans after cycle 8 of maintenance pemetrexed + pembrolizumab show growth in the L adrenal mass and new hepatic lesions, all of which prove "hot" on PET. Which of the following would NOT be appropriate therapy in the second-line setting?

- 1. Sotorasib
- 2. Adagrasib
- 3. Selpercatinib
- 4. Combination ramucirumab and pembrolizumab

Global Lung Cancer Academy

Optimizing First-Line Therapy in NSCLC – Integration of Immunotherapy Into Frontline Regimens

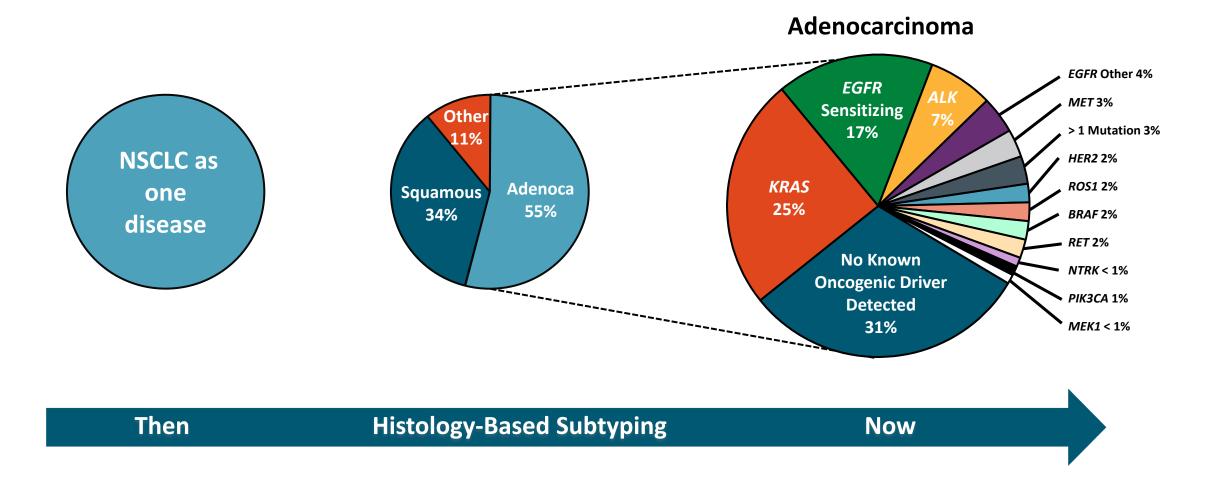
Luis Paz-Ares, MD, PhD

UNIVERSIDAD COMPLUTENSE MADRID

Optimizing First-Line Therapy in NSCLC – Integration of Immunotherapy Into Frontline Regimens

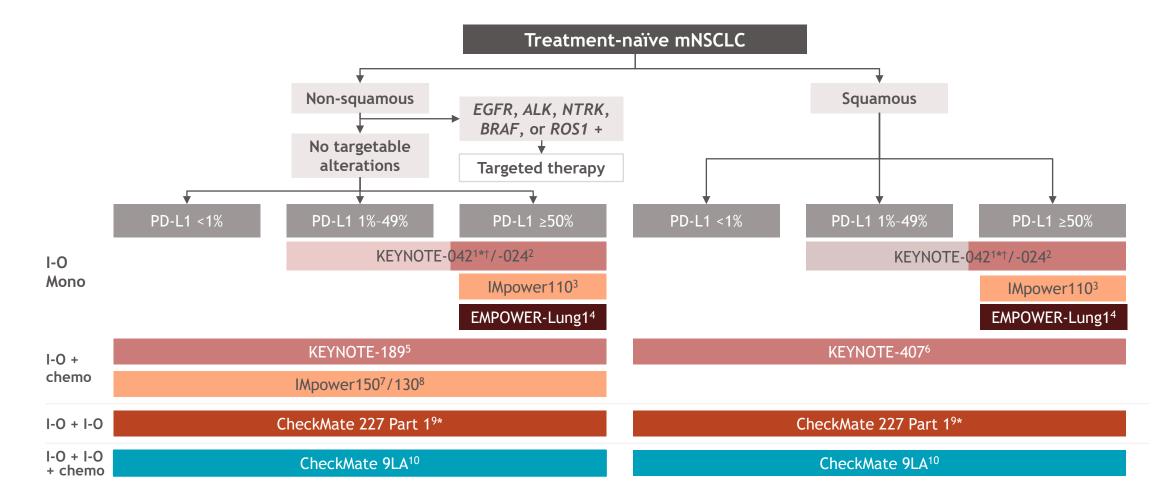
Luis Paz-Ares

Hospital Universitario 12 de Octubre


Conflicts of Interest (5 years)

Honoraria (self/family)– Scientific advice, speaker: Lilly, MSD, BMS, Roche, Pharmamar, Merck, Astra-Zeneca, Novartis, Boehringer, Celgene, Servier, Sysmex, Celgene, Amgen, Mirati, Pfizer, Ipsen,

Board Member– Genómica, Altum


Research grants to Institution – MSD, BMS, Astra-Zeneca, Pfizer

Non-Small-Cell Lung Cancer: Not One Disease, but Many!

Li. JCO. 2013;31:1039. Tsao. J Thorac Oncol. 2016;11:613.

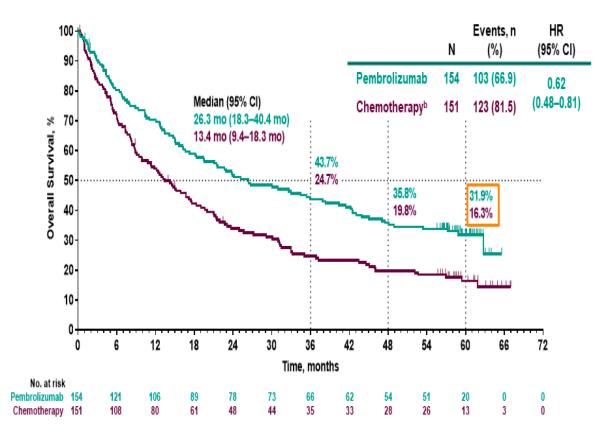
Increasing options available for 1L metastatic NSCLC

This diagram is intended for educational purposes only. It reflects the views of the presenter and not the current treatment landscape in mNSCLC.

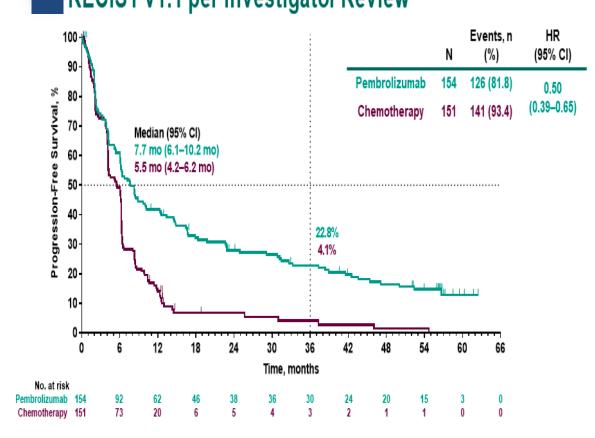
*Regulatory status varies globally. [†]ESMO guidelines indicate that benefit driven mostly by high-expressors.

1. Cho BC et al. Poster presentation at WCLC 2020. Abstract FP13.04. 2. Reck M et al. *J Clin Oncol*. 2021;39(21):2339-2349. 3. Herbst RS et al. Poster presentation at WCLC 2020. Abstract FP13.03. 4. Sezer A et al. *Lancet* 2021;397:592-604. 5. Gray JE et al. Poster presentation at WCLC 2020. Abstract FP13.02. 6. Robinson AG et al. Oral presentation at ELCC 2021. Abstract 970. 7. Socinski MA et al. Oral presentation at AACR 2020. Abstract CT216. 8. West H et al. Lancet Oncol 2019; 20(7):924-937. 9. Hellmann MD et al. *N Engl J Med*. 2018;378(22):2093-2104. 10. Paz-Arez L et al. *Lancet Oncol* 2021; 22(2):198-211.

- IO Monotherapy
- Chemo plus IO
- IO plus IO combos

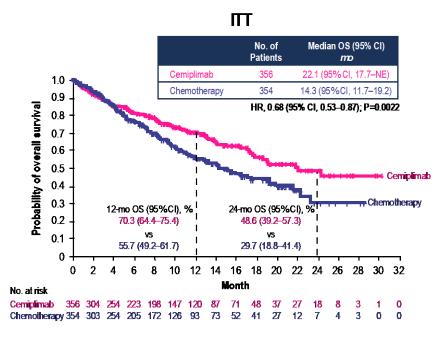

IO Monotherapy

- Chemo plus IO
- IO plus IO combos

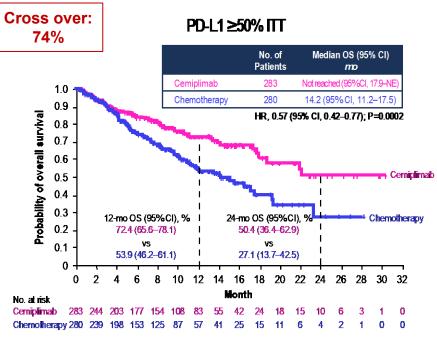

KN 024 Trial - Update

Median follow up: 59.9 months [range: 55,5–68.4])

Overall Survival^a



Progression-Free Survival^a RECIST v1.1 per Investigator Review^b



Brahmer JR, et al. Ann Oncol 2020;31(suppl):Abstr LBA51

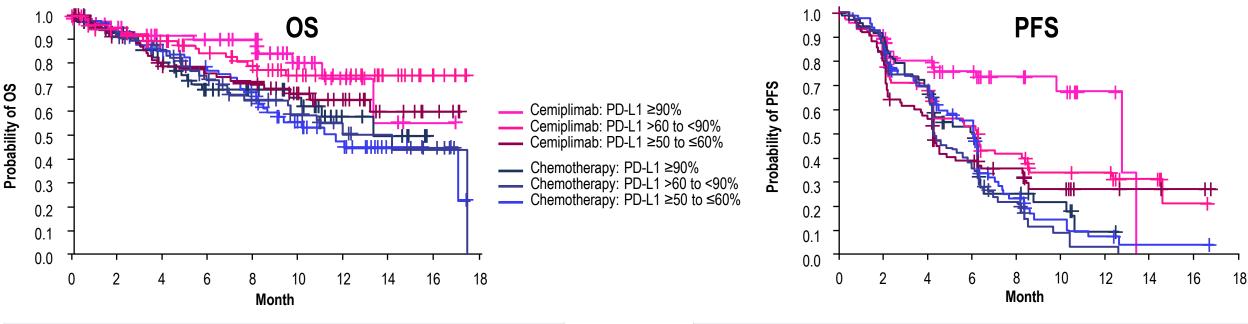
Cemiplimab – Empower Lung 1Trial

Median duration of follow-up: Cemiplimab \rightarrow 13.1 months (range: 0.1-31.9) Chemotherapy \rightarrow 13.1 months (range: 0.2-32.4)

Median duration of follow-up:

Cemiplimab \rightarrow 10.8 months (range: 0.1–31.9) Chemotherapy \rightarrow 10.2 months (range: 0.2–29.5)

Benefit from I-O monotherapy is limited in PD-L1 low or intermediate expressors

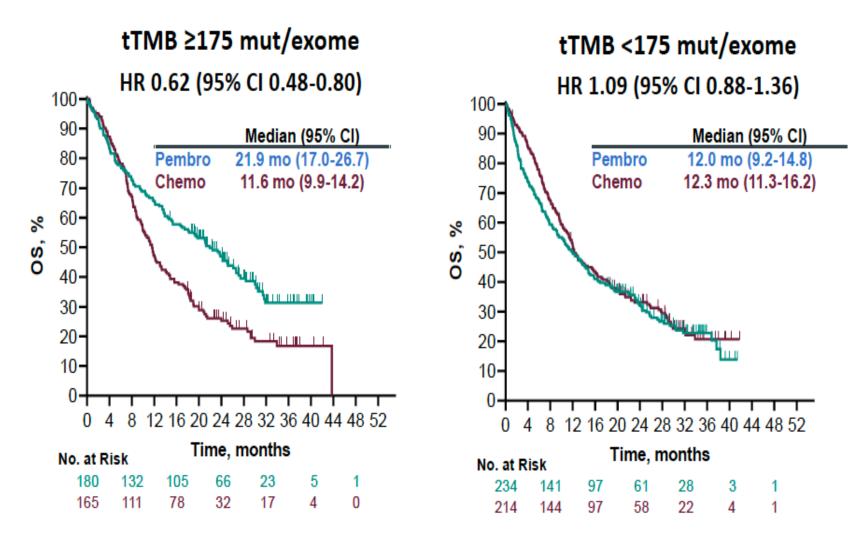

Slide intended for educational purposes only. Cross-study comparisons are not intended.

*Median follow-up time=46.9 months.¹ †Median follow-up time=31.3 months.² ‡TC2/3 or IC2/3 denotes PD-L1 expression on ≥5% of tumor or tumor-infiltrating cells respectively. [§]Median follow-up time=15.7 months.³ TC1/2 denotes PD-L1 expression on ≥1% and <50% of tumor cells or ≥1% and <10% tumor-infiltrating cells, respectively. [§]Stratified.^{2,3}

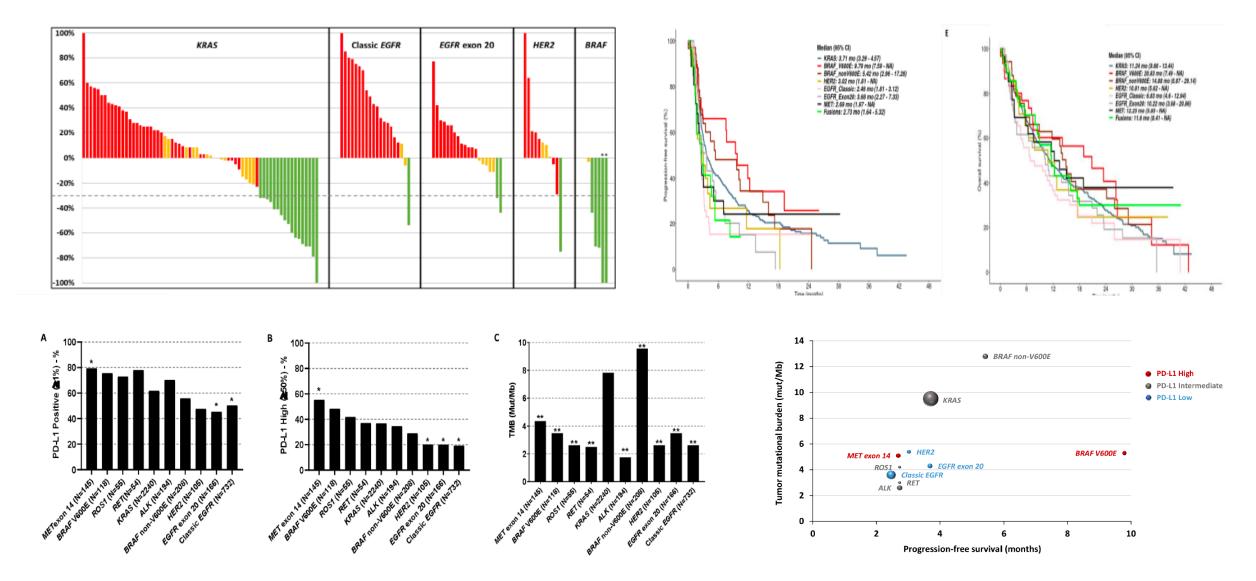
1. Cho BC et al. Poster presentation at WCLC 2020. Abstract FP13.04. 2. Herbst RS et al. Poster presentation at WCLC 2020. Abstract FP13.03. 3. Herbst RS et al. Oral presentation at ESMO I-O 2019. Abstract LBA1.

EMPOWER Lung1 by PD-L1 Expression

PD-L1 Expression Levels Correlate with OS and PFS (N=475)

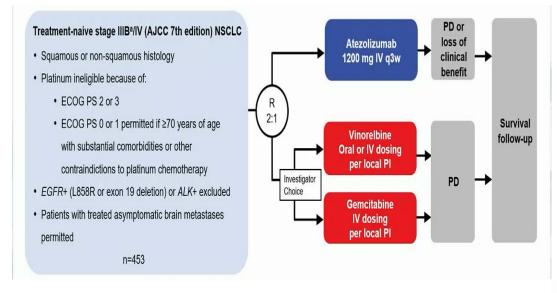

	Median, months (95% Cl)				
	Cemiplimab (N=238)		Chemotherapy (N=237)		
≥90%	NR (13.4–NE)	VS	13.3 (10.2–NE)	0.54 (0.27–1.10)	
>60 to <90%	NR (NE-NE)	VS	14.2 (9.6–17.5)	0.49 (0.26–0.92)	
≥50 to ≤60%	• NR (13.2–NE)	VS	11.7 (8.3–NE)	0.74 (0.44–1.24)	

	Median, months (95% Cl)			HR (95% CI)
Ce	miplimab (N=238)		Chemotherapy (N=23	37)
≥90%	12.7 (9.8–13.4)	VS	6.1 (4.2–6.2)	0.33 (0.19–0.58)
>60 to <90%	6.2 (4.2–8.4)	VS	4.3 (4.1–5.9)	0.57 (0.38–0.85)
≥50 to ≤60%	4.3 (2.8–5.2)	VS	6.0 (4.4–6.2)	0.89 (0.61–1.29)

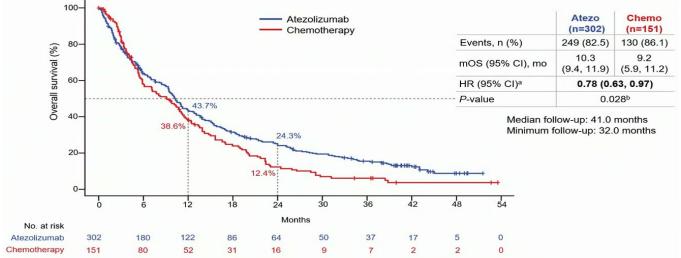

CI, confidence interval; HR, hazard ratio; NE, not evaluable; NR, not reached; OS, overall survival; PD-L1, programmed cell death-ligand 1; PFS, progression-free survival.

Kilickap et al. WLCC 2020

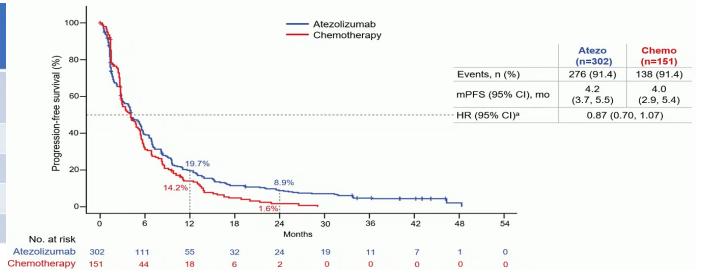
Pembro benefit may be restricted to PD-L1 > 50% & TMB high



Individual Genomic Aberrations



Negrao et al., JITC 2021

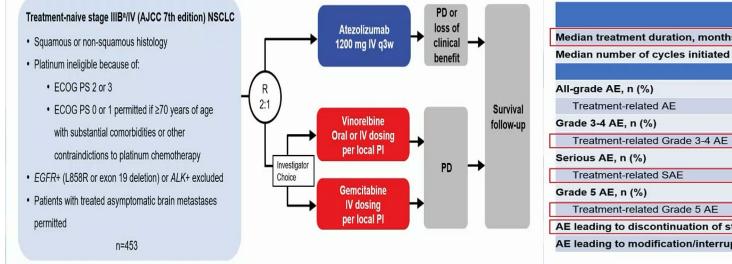

IPSOS trial: Atezo 1L in PS 2-3 patients/Elderly PS1

Ρ	rim	ary	End	point:	OS

Secondary Endpoints: PFS

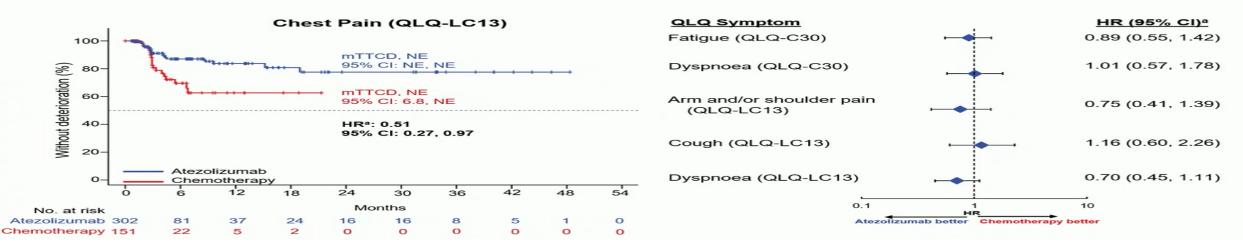
(n=302) (n=151) Number of patients with any subsequent 61 (20.2) 45 (29.8) anti-cancer therapy, n (%) Chemotherapy, n (%) 48 (15.9) 16 (10.6) Cancer Immunotherapy, n (%) 4 (1.3) 28 (18.5) TKI, n (%) 10 (3.3) 5 (3.3) Other, n (%) 3 (1.0) 1(0.7)

Atezolizumab


Chemotherapy

Lee et al. ESMO 2022;

Vansteenkiste J. et al., atezolizumab in NSCLC (POPLAR)

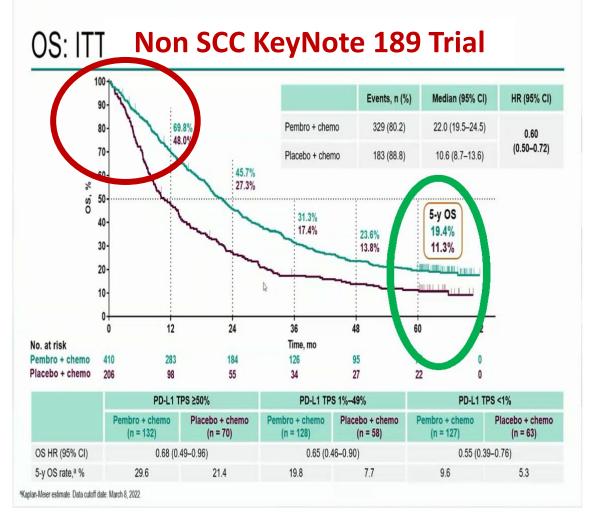

IPSOS trial: Atezo 1L in PS 2-3 patients/Elderly PS1

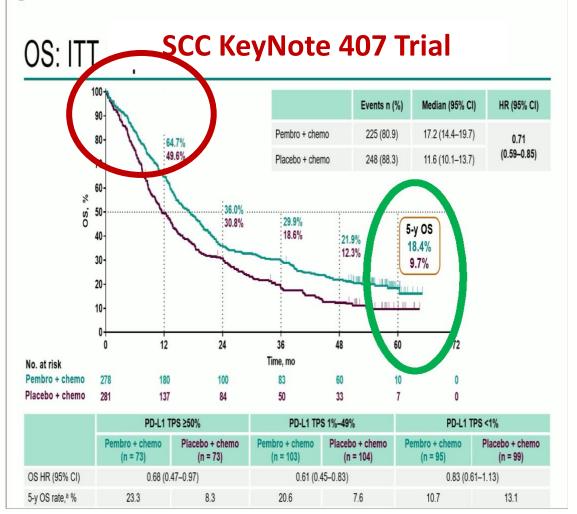
Safety Summary

	Atezolizumab (n=300)	Gemcitabine (n=63)	Vinorelbine (n=84)
Median treatment duration, months (range)	3.5 (0-51)	2.3 (0-13)	1.8 (0-21)
Median number of cycles initiated (range)	6.0 (1-73)	4.0 (1-19)	3.0 (1-31)
	Atezolizumab (n=300)	Chemotherap	oy (n=147)
All-grade AE, n (%)	275 (91.7)	143 (97	7.3)
Treatment-related AE	171 (57.0)	118 (80).3)
Grade 3-4 AE, n (%)	136 (45.3)	71 (48	.3)
Treatment-related Grade 3-4 AE	49 (16.3)	49 (33	.3)
Serious AE, n (%)	146 (48.7)	53 (36	.1)
Treatment-related SAE	35 (11.7)	23 (15	.6)
Grade 5 AE, n (%)	35 (11.7)	13 (8.	8)
Treatment-related Grade 5 AE	3 (1.0)	4 (2.7	')
AE leading to discontinuation of study drug, n (%)	39 (13.0)	20 (13	.6)
AE leading to modification/interruption of study drug, n (%)	96 (32.0)	71 (48	.3)

Time to Confirmed Deterioration

Lee et al. ESMO 2022;

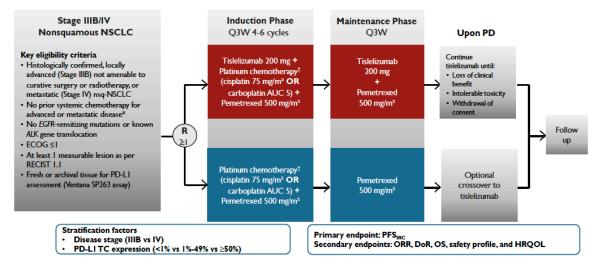


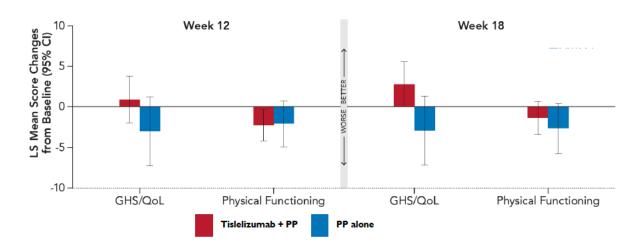

IO Monotherapy

- Chemo plus IO
- IO plus IO combos

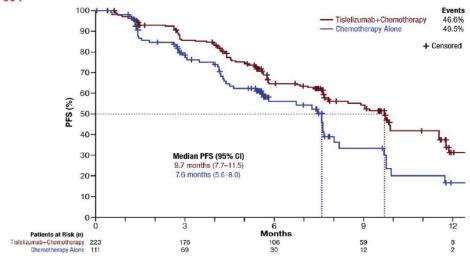
PD-1/PD-L1 combos may enlarge the benefit

KN189 & KN407-5 years update

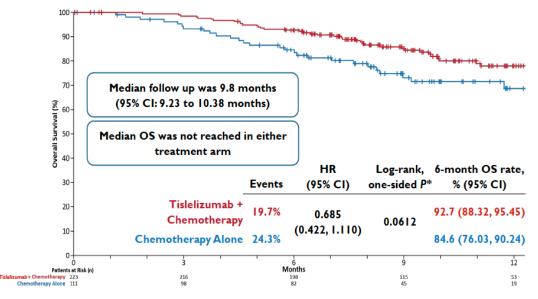



Ghandi et al., NEJM 2018; Garassino et al., ESMO 2022

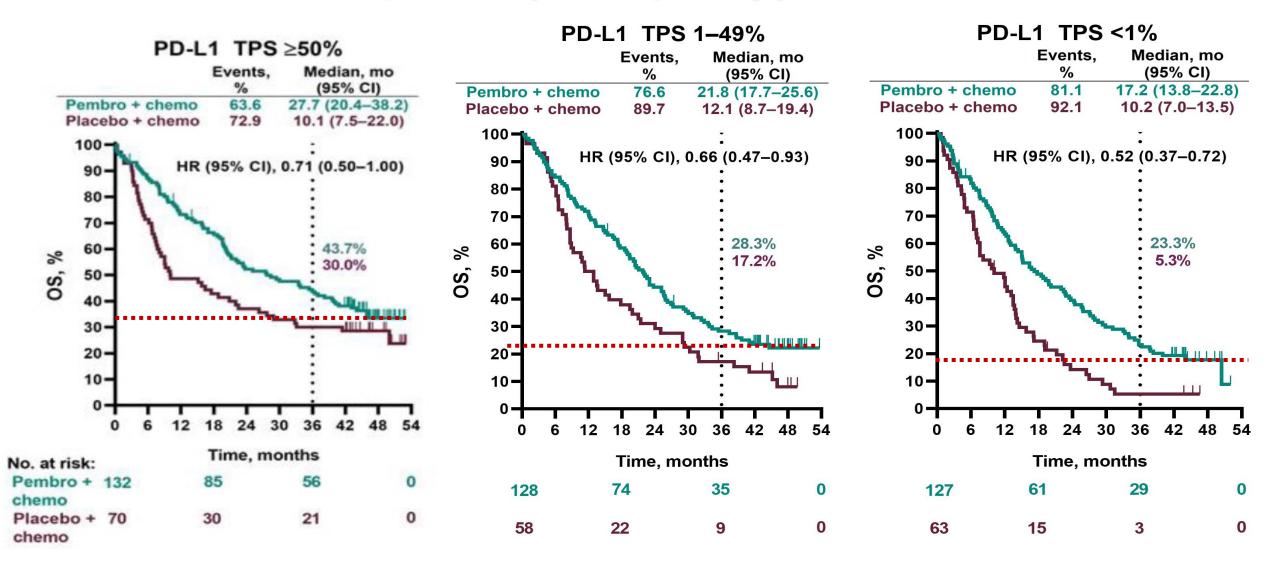
Paz-Ares et al., NEJM 2018; Novello et al., ESMO 2022


Rationale 304 Trial

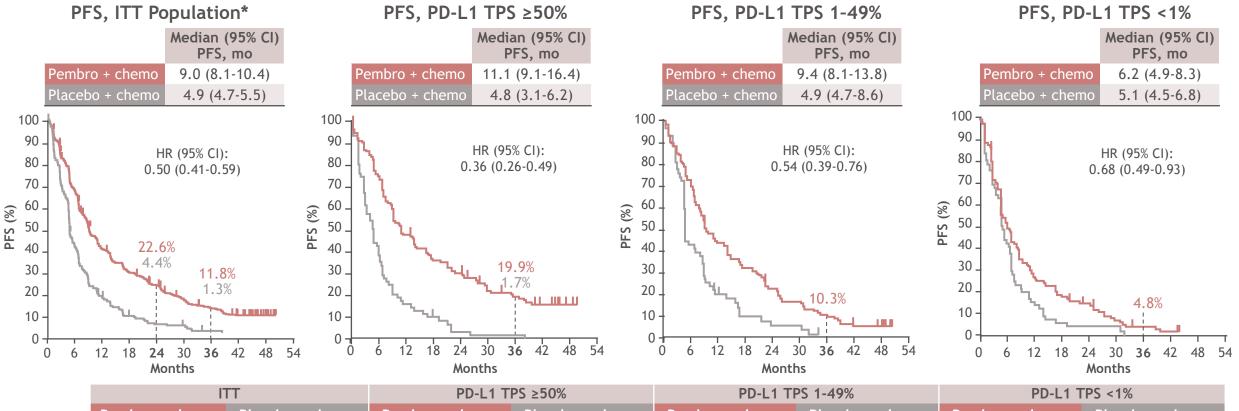
Change from Baseline in EORTC QLQ-C30 Subscales



Progression-Free Survival as Assessed by IRC (ITT Population) RATIONALE-304


Overall Survival (ITT Population)

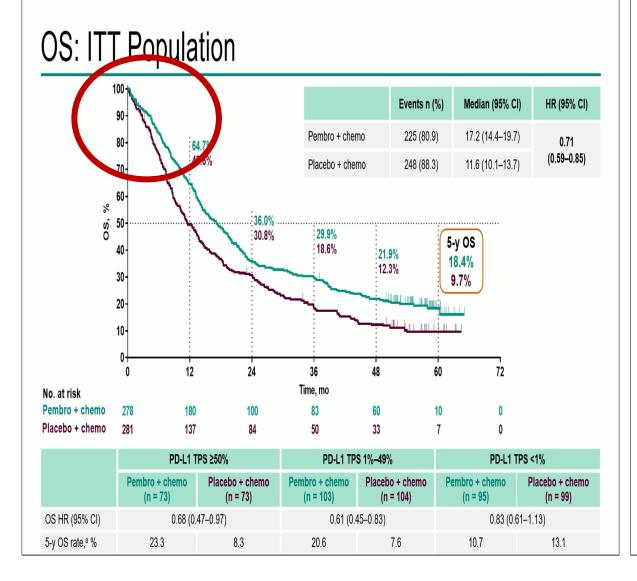
RATIONALE-304

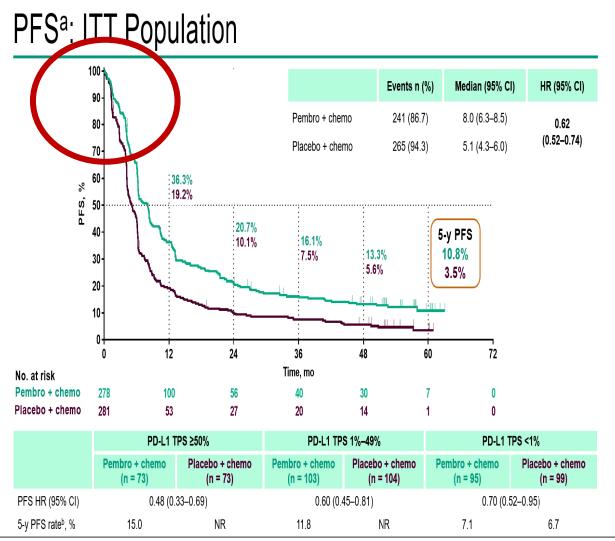

Lu et al. JTO 2021

KN 189 update (M Fup: 4 y)

Gray et al. WLCC 2020

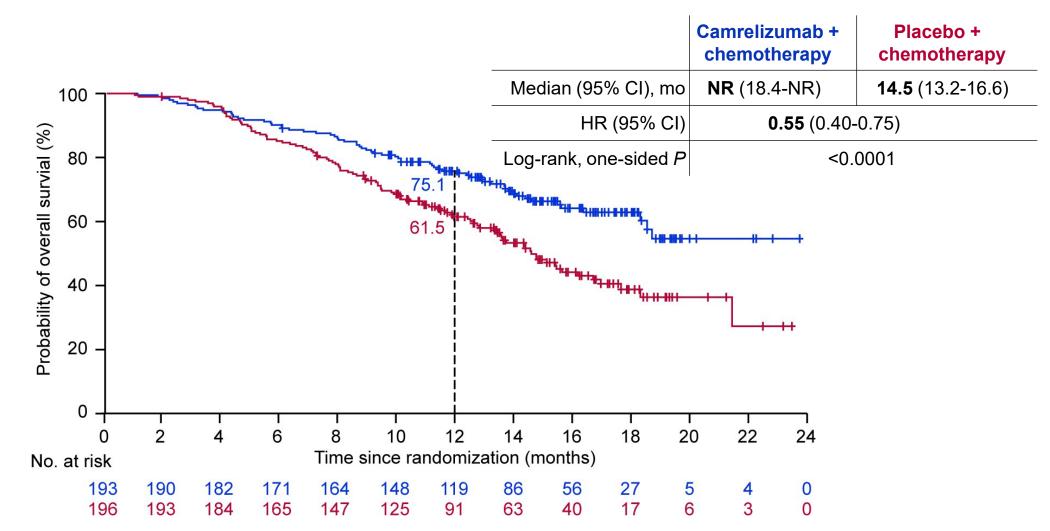
KEYNOTE-189: Pembro + chemo shows 3-year efficacy benefit across PD-L1 expression, with long-term outcomes driven by high PD-L1 expressors




	Pembro + chemo (n=410)	Placebo + chemo (n=206)	Pembro + chemo (n=132)	Placebo + chemo (n=70)	Pembro + chemo (n=128)	Placebo + chemo (n=58)	Pembro + chemo (n=127)	Placebo + chemo (n=63)
ORR, %	48.3	19.9	62.1	25.7	50.0	20.7	33.1	14.3
mDOR, mo	12.6	7.1	15.1	7.1	13.6	7.6	10.8	7.8

*Co-primary endpoint.

Gray JE et al. Poster presentation at WCLC 2020. Abstract FP13.02.


KN407 – 5 years update

S Novello et al. ESMO 2022

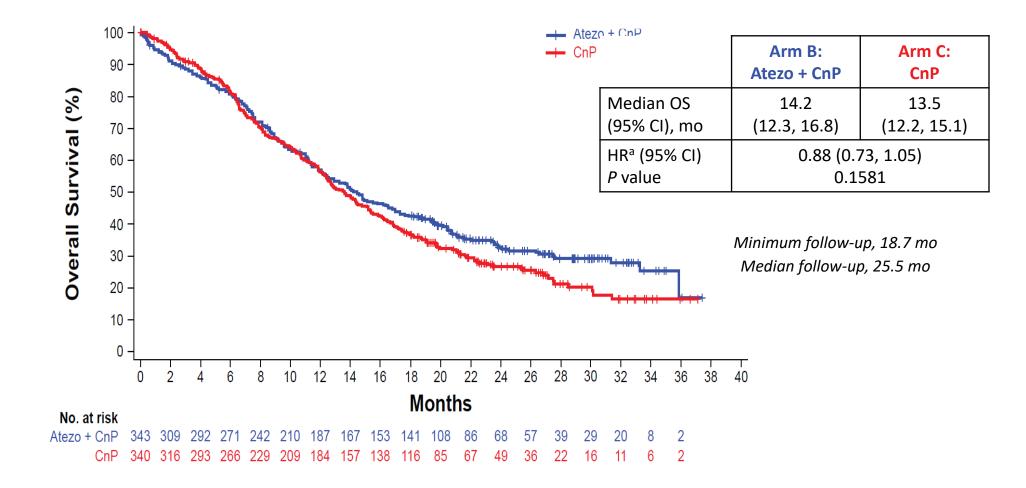
CameL-sq Trial - OS

Data cutoff: Nov.06, 2020

Median follow-up: 13.5 mo for camrelizumab+chemo, 11.6 mo for placebo+chemo

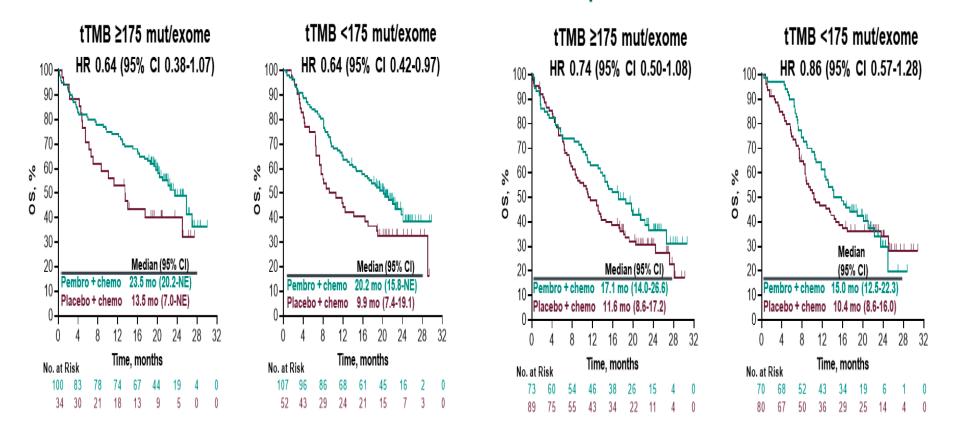
OS analyzed using a stratified one-sided log-rank test;

HR estimated using a stratified Cox proportional hazards model.


46.9% of patients in the placebo+chemo group crossed over after PD.

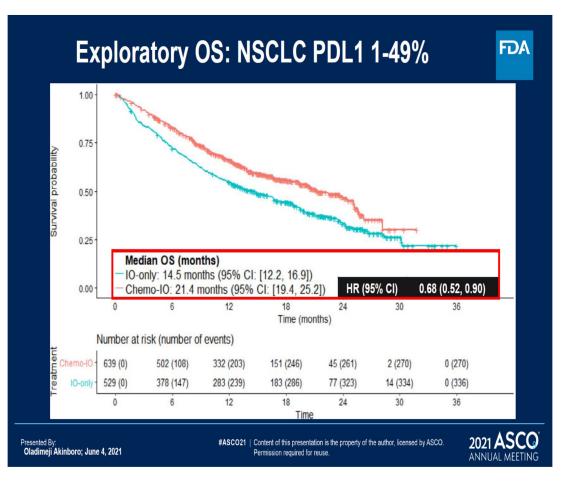
NR, not reached

Zhou et al., ELCC 2021

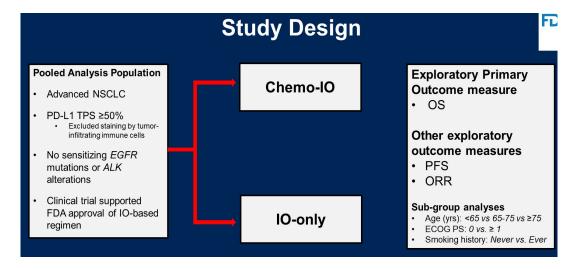

EUROPEAN LUNG CANCER VIRTUAL CONGRESS 2021

IMpower 131 – CnP <u>+</u> Atezolizumab Final OS in the ITT population (Arm B vs Arm C)

TMB may not predict outcome with Chemo-IO

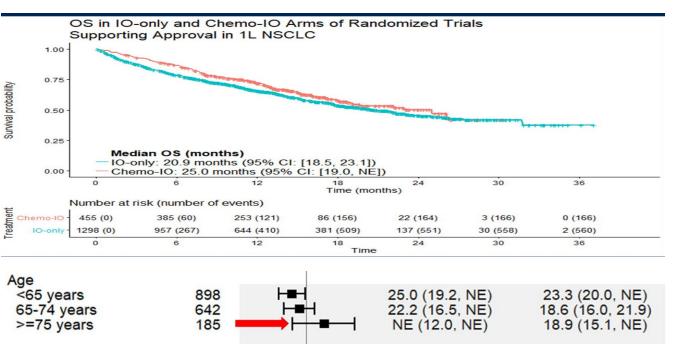

Clinical Utility for OS in KEYNOTE-189: tTMB Cutpoint of 175 mut/exome

Clinical Utility for OS in KEYNOTE-407:


tTMB Cutpoint of 175 mut/exome

IO alone v Chemo-IO in tumors with PD-L1 1-49%

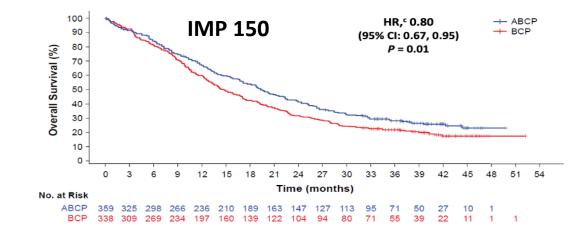
Study	Investigational Treatment	Histology	PD-L1 1-49% OS HR (95% CI)
Keynote 042	Pembrolizumab alone	All NSCLC	0.92 (0.77-1.11)
Checkmate 227	NIVO/IPI	All NSCLC	0.94 (0.75-1.18)
Keynote 189	Pembro-Chemo	Non-squamous	0.55 (0.34-0.90)
Keynote 407	Pembro-Chemo	Squamous	0.57 (0.36-0.90)
Checkmate 9LA	NIVO/IPI + Chemo	All NSCLC	0.61 (0.44-0.84) (published) 0.70 (not included) (update)


IO vs Chemo-IO in NSCLC PD-L1 > 50%

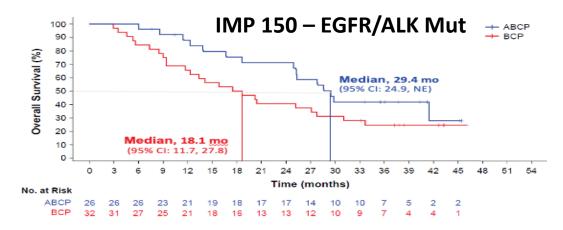
Chemo-IO Trials		IO-only Trials	
Trial	Investigational Regimen	Trial	Investigational Regimen
KEYNOTE-021*	Pembrolizumab + Chemo**	CheckMate 026	Nivolumab**
KEYNOTE-189	Pembrolizumab + Chemo**	KEYNOTE-024	Pembrolizumab**
KEYNOTE-407	Pembrolizumab + Chemo**	KEYNOTE-042	Pembrolizumab**
IMpower150	Atezolizumab + Bevacizumab + Chemo***	IMpower110	Atezolizumab**
IMpower130	Atezolizumab + Chemo**	CheckMate 227	Nivolumab + Ipilimumab**
CheckMate-9LA	Nivolumab + Ipilimumab + Chemo**	EMPOWER-Lung 1	Cemiplimab**

-		+
Chemo-IO	IO alone	Chemotherapy
<i>N</i> =455	N=1298	<i>N</i> =1436

	Chemo-IO (<i>N</i> =455)	IO-alone (<i>N</i> =1,298)	
OS			
Median, months (95% CI)	25.0 (19.0, NE)	20.9 (18.5, 23.1)	
HR (95% CI)	0.82 (0.62, 1.08)		
PFS			
Median, months (95% CI)	9.6 (8.4, 11.1)	7.1 (6.3, 8.3)	
HR (95% CI)	0.69 (0.55, 0.87)		
ORR			
% (95% CI)	61 (56, 66)	43 (41, 46)	
Odds ratio	1.2 (1.1, 1.3)		

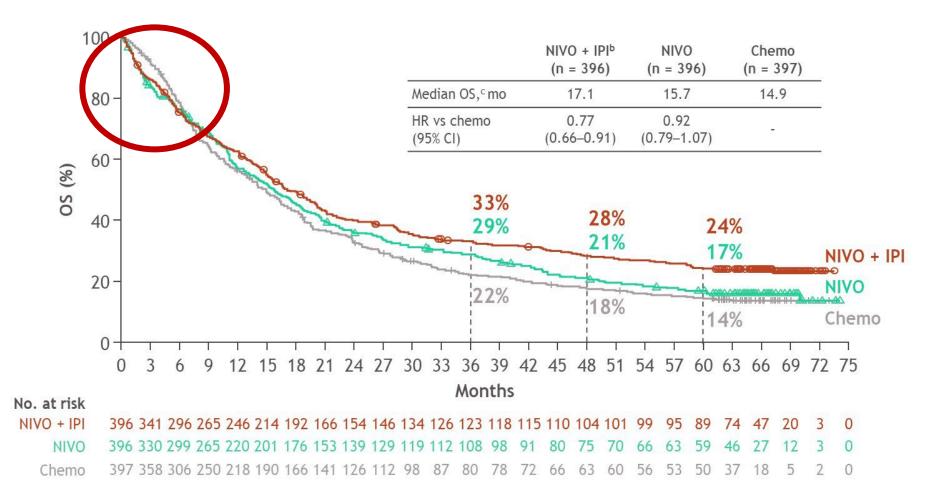


Akinboro et al. ASCO 2022


Smoking status and single genomic aberrations may not be as relevant with Chemo-IO

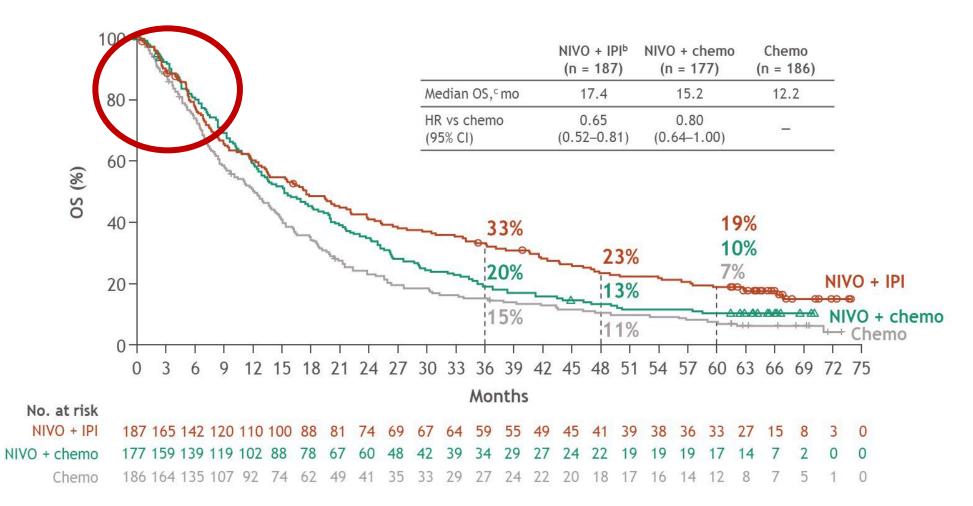
KN 189

E Subgroup	No. of events/ No. of patients		HR for OS (95% CI)
Overall	421/616	-8-	0.56 (0.46-0.69)
Age			
<65 years	217/312		0.49 (0.37-0.65)
≥65 years ECOG PS	204/304		0.72 (0.54-0.97)
0	153/265		0.55 (0.39-0.77)
1	265/346	-	0.61 (0.48-0.78)
Sex		-	
Female	171/253		0.41 (0.30-0.56)
Male	250/363		0.74 (0.56-0.96)
Smoking status			
Never	49/73		0.30 (0.16-0.54)
Former/current	372/543		0.62 (0.50-0.77)
Brain metastasis at baseline			
Yes	77/108		0.43 (0.27-0.71)
No	344/508	+	0.58 (0.46-0.72)
Liver metastasis at baseline			
Yes	95/116		0.64 (0.42-1.00)
No	326/500	-	0.58 (0.46-0.73)
M1 stage at baseline			
M1a	102/176		0.54 (0.35-0.82)
M1b	317/437	-	0.58 (0.46-0.73)
PD-L1 TPS			
<1%	146/190		0.51 (0.36-0.71)
≥1%	246/388	-	0.63 (0.48-0.81)
Platinum chemotherapy			
Cisplatin	117/171		0.53 (0.36-0.77)
Carboplatin	304/445	+	0.58 (0.46-0.73)
		0.1	1 10
		Pembro + chemo better	Placebo + chemo better


Arm B (atezo + bev + CP) vs Arm C (bev + CP)

- IO Monotherapy
- Chemo plus IO
- IO plus IO combos

CM 227 Trial: 5-year OS in patients with PD-L1 ≥ 1%



Database lock: February 15, 2022; minimum/median follow-up for OS: 61.3/66.7 months.

aln patients with PD-L1 ≥ 1% with a PFS event (per BICR), subsequent systemic therapy was received by 34% in the NIVO + IPI arm, 46% in the NIVO arm, and 48% in the chemo arm; subsequent immunotherapies by 7%, 9%, and 40%; subsequent chemo by 33%, 45%, and 25%, respectively. bNIVO + IPI vs NIVO HR was 0.84 (95% CI, 0.72–0.99). Median OS 95% CI are 14.95–20.17 (NIVO + IPI), 13.27–18.14 (NIVO), and 12.71–16.72 (chemo).

Brahmer et al. Asco 2022

CM 227: 5-year OS in patients with PD-L1 < 1%

Database lock: February 15, 2022; minimum/median follow-up for OS: 61.3/66.7 months.

^aIn patients with PD-L1 < 1% with a PFS event (per BICR), subsequent systemic therapy was received by 44% in the NIVO + IPI arm, 39% in the NIVO + chemo arm, and 48% in the chemo arm; subsequent immunotherapies by 8%, 5%, and 33%; subsequent chemo by 43%, 37%, and 33%, respectively. ^bNIVO + IPI vs NIVO + chemo HR was 0.80 (95% CI, 0.63–1.00). ^cMedian OS 95% CI are 13.21–22.05 (NIVO + IPI), 12.29–19.78 (NIVO + chemo), and 9.17–14.32 (chemo).

Brahmer et al. Asco 2022

CM 227: OS in patients subsets

All Patients

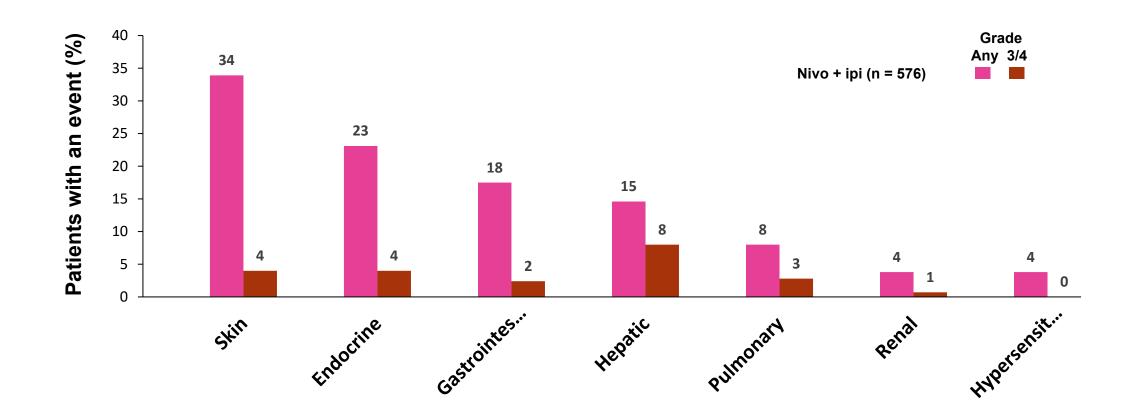
	Median Overall Survival, Months			
Subgroup	Nivolumab plus Ipilimumab N=583	Chemotherapy N=583	Unstratified Hazard Ra	tio for Death (95% CI)
All the patients (N=1166)	17.1	13.9		0.73 (0.64–0.84)†
Age				
<65 yr (n=611)	16.6	14.2		0.70 (0.58-0.85)
≥65 to <75 yr (n=442)	18.7	13.0	- _	0.76 (0.61-0.95)
≥75 yr (n=113)	15.1	12.4		0.84 (0.55-1.29)
Sex				
Male (n=778)	18.7	13.2	_	0.68 (0.57-0.80)
Female (n=388)	16.1	15.4		0.89 (0.70-1.12)
ECOG performance-status sco	ore			
0 (n=395)	24.4	18.8	- _	0.70 (0.54-0.89)
1 (n=763)	14.8	11.3		0.77 (0.65-0.90)
Smoking status				
Never smoked (n=157)	15.3	16.1		0.96 (0.66-1.41)
Smoker (n=996)	17.4	13.5	_	0.72 (0.62-0.84)
Tumor histologic type [‡]				
Squamous (n=328)	15.0	9.2		0.62 (0.49-0.80)
Nonsquamous (n=838)	19.2	15.3	_ - -	0.79 (0.67-0.93)
Liver metastases				
Yes (n=252)	10.3	10.4		0.82 (0.62-1.08)
No (n=914)	19.4	15.1		0.72 (0.62-0.85)
Bone metastases				
Yes (n=316)	12.2	8.8	•	0.68 (0.53-0.88)
No (n=850)	19.2	16.0		0.75 (0.64-0.89)
CNS metastases				
Yes (n=115)	16.8	13.4	•	0.64 (0.42-0.97)
No (n=1051)	17.2	14.0		0.75 (0.65-0.86)
		0.25		2.0 notherapy Better

PDL1 Negative Patients

	Median Overall	Survival, Months	
Subgroup	Nivolumab plus Ipilimumab N=187	Chemotherapy N=186	Unstratified Hazard Ratio for Death (95% CI)
All randomized patients (N=373) 17.2	12.2	0.62 (0.48-0.78)†
Age			
<65 yr (n=205)	12.8	12.1	0.69 (0.50-0.94)
≥65 to <75 yr (n=136)	25.2	11.6	0.49 (0.32–0.75)
≥75 yr (n=32)	25.3	16.8	0.75 (0.31–1.82)
Sex			
Male (n=263)	19.4	11.0	0.55 (0.41-0.73)
Female (n=110)	15.3	13.6	0.83 (0.54–1.28)
ECOG performance-status score	е		
0 (n=126)	25.3	20.8	0.78 (0.50–1.23)
1 (n=244)	15.5	8.7	0.55 (0.42-0.74)
Smoking status			
Never smoked (n=50)	15.3	13.0	0.60 (0.32–1.15)
Smoked (n=322)	17.4	12.1	0.63 (0.49–0.82)
Tumor histologic type [‡]			
Squamous (n=92)	15.9	8.5	0.49 (0.30–0.79)
Nonsquamous (n=281)	17.5	13.1	0.67 (0.51–0.88)
Liver metastases			
Yes (n=96)	11.7	7.8	0.52 (0.32–0.83)
No (n=277)	17.8	13.9	0.65 (0.49–0.86)
Bone metastases			
Yes (n=108)	9.5	7.6	0.58 (0.37–0.89)
No (n=265)	19.6	14.5	0.64 (0.48–0.85)
CNS metastases			
Yes (n=34)	15.2	10.0	0.54 (0.24–1.22)
No (n=339)	17.8	0.125	0.62 (0.48-0.80)
		•	Nivolumab plus Chemotherapy pilimumab Better Better

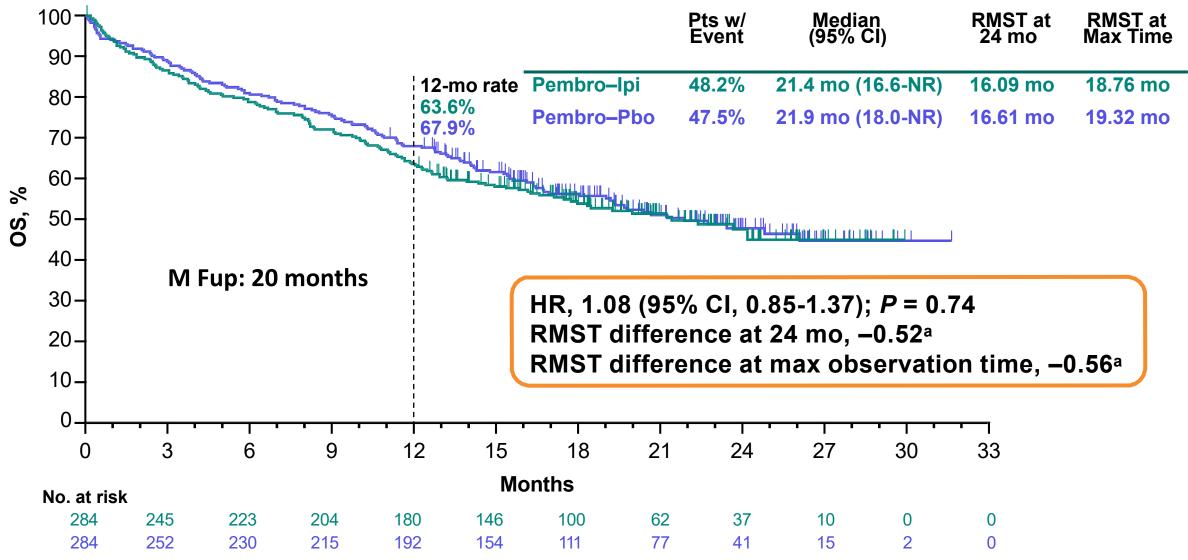
Hellmann et al. NEJM 2019

Safety Summary of Treatment-Related AEs


		+ ipilimumab 576)	Chemotherapy (n = 570)		
TRAE, ^a %	Any grade	Grade 3–4	Any grade	Grade 3–4	
Any TRAE	75	31	81	36	
TRAE leading to discontinuation ^b	17	12	9	5	
Most frequent TRAEs (≥15%)					
Rash	17	2	5	0	
Diarrhea	16	2	10	1	
Fatigue	13	1	18	1	
Decreased appetite	13	<1	19	1	
Nausea	10	<1	36	2	
Constipation	4	0	15	<1	
Anemia	4	2	32	11	
Neutropenia	<1	0	17	9	
Treatment-related deaths ^c		1	1		

• Median duration (range) of therapy was 4.2 months (0.03–24.0+) with nivolumab + ipilimumab and 2.6 months (0.03–22.1+) with chemotherapy

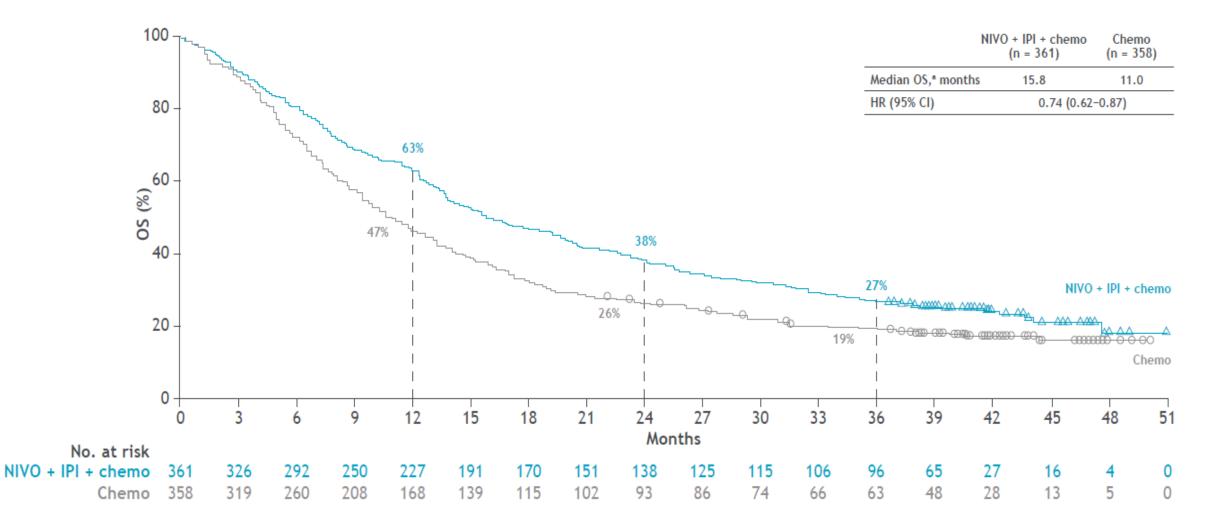
• Median number of doses of nivolumab (Q2W) and ipilimumab (Q6W) received were 9 and 3, respectively


^aIncludes events reported between first dose and 30 days after last dose of study drug; ^bFor nivo + ipi, these events include TRAEs leading to discontinuation of ipi or both study drugs; patients could not discontinue nivo without discontinuing ipi; ^cTreatment-related deaths in the nivo + ipi arm included myocarditis, acute tubular necrosis, pneumonitis (n = 3), circulatory collapse, and cardiac tamponade; deaths in the chemo arm included sepsis (n = 2), multiple brain infarctions, interstitial lung disease, thrombocytopenia, and febrile neutropenia with sepsis

Treatment-Related Select AEs in Patients Treated With Nivolumab + Ipilimumab^{a,b}

Select AEs were events with potential immunologic etiology that required frequent monitoring/intervention; included events reported between first dose and 30 days after last dose of study drug.

KN 598: Overall Survival



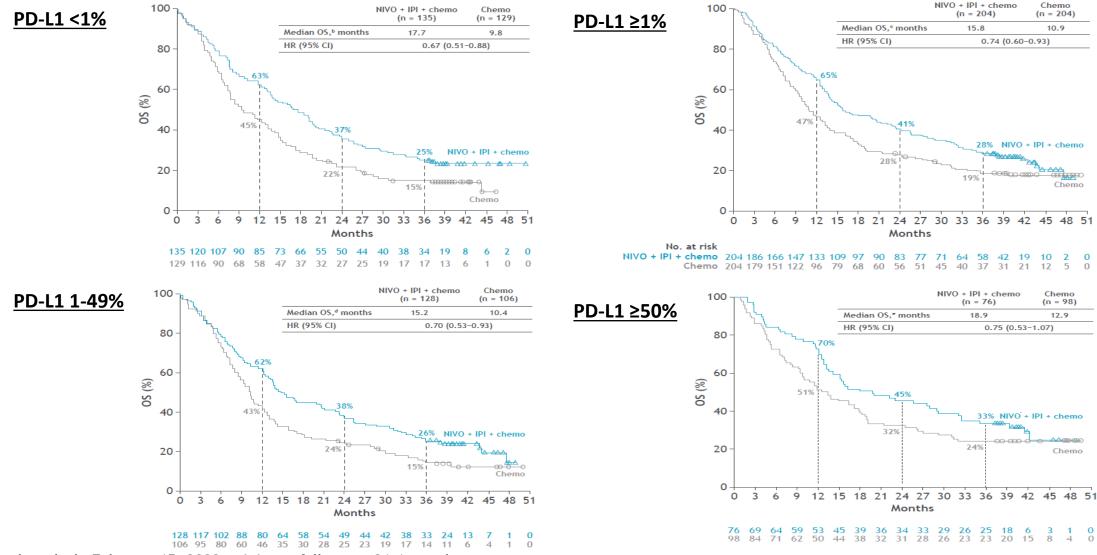
^aNonbinding futility criteria met.

Data cutoff date: Sep 1, 2020; median study follow-up was 20.6 months (range, 12.4–31.7 months).

Boyer et al. WLCC 2020

9 LA Trial 3-Year update: OS in all randomized patients

Database lock: February 15, 2022; minimum follow-up: 36.1 months. ^a95% CI, 13.9-19.7 (NIVO + IPI + chemo) and 9.5-12.7 (chemo).

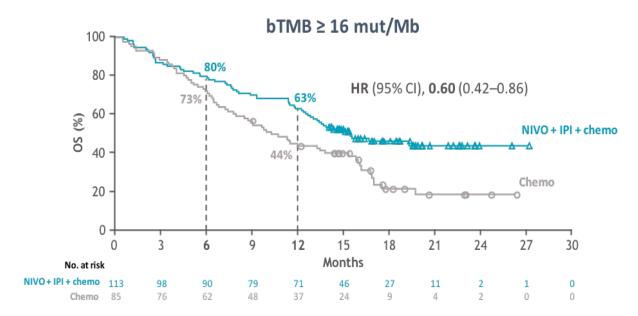

9LA Regimen – OS According to Age

	Median OS,	Median OS, mo				
Subgroup	NIVO + IPI + chemo	Chemo	Unstratified HR	Unstratified HR (95% CI)		
Sungroup	n = 361	n = 358				
All randomized (N = 719)	15.6	10.9	0.66ª			
< 65 years (n = 354)	15.6	10.7	0.61			
65 to < 75 years (n = 295)	19.4	11.9	0.62			
≥ 75 years (n = 70)	8.5	11.5	1.21			
Male (n = 504)	14.1	9.8	0.66			
Female (n = 215)	19.4	15.8	0.68	i		
ECOG PS 0 (n = 225)	NR	15.4	0.48			
ECOG PS 1 (n = 492)	13.6	9.7	0.75	_ _		
Never smoker (n = 98)	14.1	17.8	1.14			
Smoker (n = 621)	15.6	10.4	0.62	_ !		
Squamous (n = 227)	14.5	9.1	0.62	¦		
Non-squamous (n = 492)	17.0	11.9	0.69	I		
Liver metastases (n = 154)	10.2	8.1	0.83			
No liver metastases (n = 565)	19.4	12.4	0.64			
Bone metastases (n = 207)	11.9	8.3	0.74			
No bone metastases (n = 512)	20.5	12.4	0.65			
CNS metastases (n = 122)	NR	7.9	0.38			
No CNS metastases (n = 597)	15.4	11.8	0.75	- -		
PD-L1 < 1% (n = 264)	16.8	9.8	0.62	_		
PD-L1 ≥ 1% (n = 407)	15.8	10.9	0.64	_		
PD-L1 1–49% (n = 233)	15.4	10.4	0.61	○ ── ●		
PD-L1 ≥ 50% (n = 174)	18.0	12.6	0.66	<u> </u>		

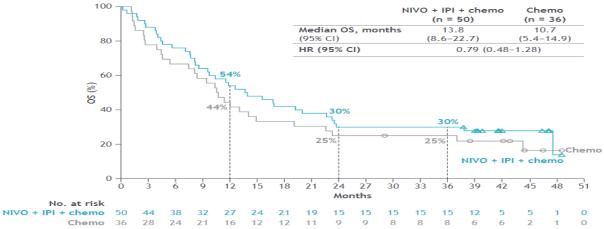
Minimum follow-up: 12.7 months.

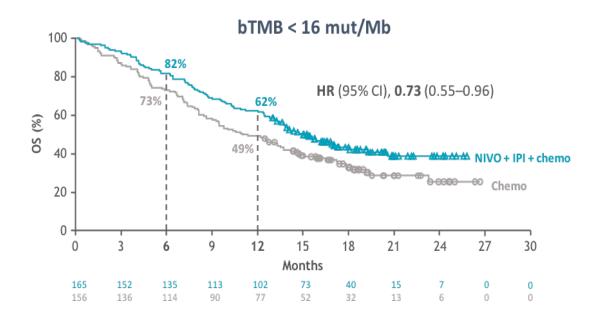
^aStratified HR; unstratified HR was 0.67 (95% CI, 0.55–0.81).

Overall survival by PD-L1 expression

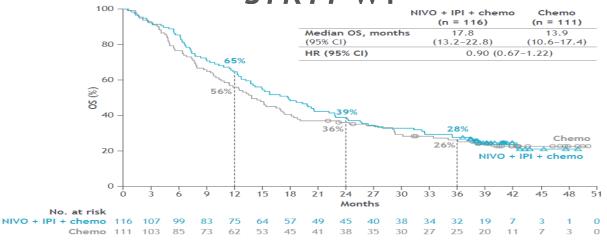


Database lock: February 15, 2022; minimum follow-up: 36.1 months.


^a95% CI, 13.7-20.3 (NIVO + IPI + chemo) and 7.7-13.5 (chemo); ^b95% CI, 13.8-22.2 (NIVO + IPI + chemo) and 9.5-13.2 (chemo); ^c95% CI, 12.6-21.2 (NIVO + IPI + chemo) and 8.7-12.4 (chemo); ^d95% CI, 13.1-29.1 (NIVO + IPI + chemo) and 9.4-17.6 (chemo).


L Paz-Ares et al. ASCO 2022

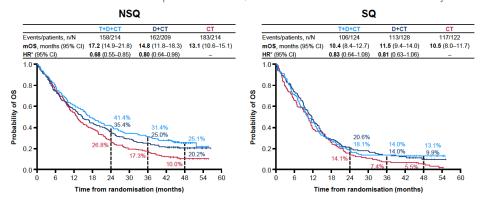
9LA régimen - TMB and genomic aberrations are not predictive



STK11-mut

STK11-WT

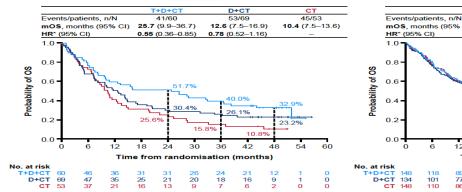
L Paz-Ares et al. ELCC 2021 & ASCO 2022.


POSEIDON trial – Updated Outcomes

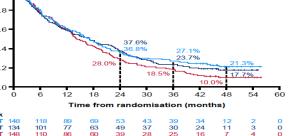
T+D+CT vs CT T+D+CT СТ 1.0 264/338 (78.1) 301/337 (89.3) Events/patients, n/N (%) mOS, months (95% CI) 14.0 (11.7-16.1) 11.7 (10.5-13.1) HR* (95% CI) 0.75 (0.63-0.88) _ 0.8 Probability of OS 0.6 54.8% 49.1% 0.4 32.9% 25.0% 20.7% 0.2 22.09 13.6% 8.3% 0.0 0 6 12 18 24 30 36 42 48 54 60 Time from randomisation (months) No. at risk T+D+CT 338 0 256 183 137 109 89 83 70 32 6 CT 337 236 160 71 51 42 31 14 5 0 111

		Events/ patients, n/N	T+D+CT vs CT
All patients		565/675	⊢ •–1
Sex	Male Female	442/517 123/158	
Age	<65 years ≥65 years	297/367 268/308	
PD-L1 expression	TC ≥50% TC <50% TC ≥1% TC <1%	154/198 411/477 336/420 229/255	
Histology	Squamous Non-squamous	223/246 341/428	
Planned CT	Nab-paclitaxel doublet Pemetrexed doublet Gemcitabine doublet	34/42 ► 326/411 205/222	
Smoking history	Current Former Never	122/150 319/386 123/138	
Race	Asian Non-Asian	185/227 380/448	
ECOG PS	0 1	180/229 385/446	
Brain metastases	Yes No	62/78 503/597	
AJCC disease stage	IVA IVB	279/337 285/335	
		0.25	0.5 1 2
			Favours T+D+CT Favours CT

Updated OS by Histology



Updated OS by KRAS Mutation Status


KRASm

OS benefit observed for T+D+CT vs CT in KRASm with HR 0.55 and estimated 40.0% alive at 3 yrs vs 15.8%

T+D+CT D+CT 113/148 107/134 mOS, months (95% Cl) 17.1 (13.4-20.1) 17.1 (12.3-22.6) 14.4 (12.6-18.3) 0.78 (0.60-1.00) 0.83 (0.64-1.08)

KRASwt

M Johnson et al. ESMO 2022

127/148

Advanced NSCLC: IO Selection

Tumor

- PD-L1
- > Agressiveness
- Tumor burden
- Genomics/TMB

Patient

- > PS
- Smoking
- ➢ Gender
- Comorbidities
- Convenience
- Expectations

- IO Monotherapy
- Chemo plus IO
- IO plus IO combos
- Chemo plus IO-IO combos

Take home

- Novel immunotherapy strategies have impacted the natural history of advanced NSCLC patients
 - > PD-1 inhibitors in PD-L1 \geq 50
 - Chemo-IO in low/negative PD-L1 expressors
 - Dual IO combos
- Different treatment alternatives and combos should be consider according to tumor characteristics and patient health and expectations
- Multiparametric predictive biomarkers are required for personalized IO approaches

Gracias Ipazaresr@seom.org

Current Immunotherapy Options for Relapsed NSCLC

Benjamin Besse, MD, PhD

Current Immunotherapy Options for Relapsed NSCLC

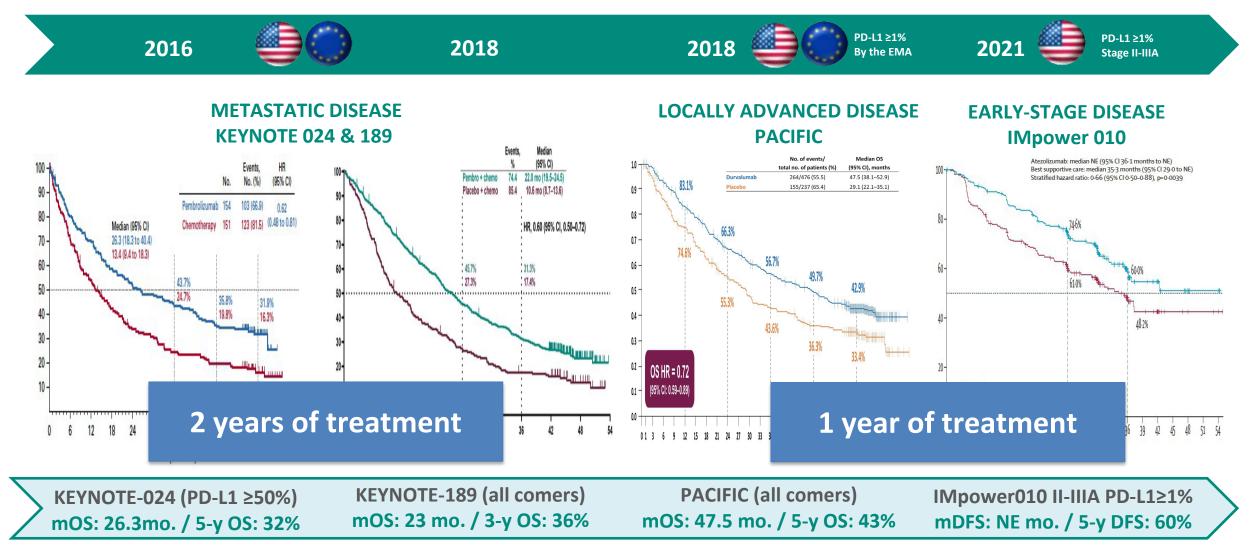
Benjamin Besse MD, PhD Head, Clinical Research Gustave Roussy Cancer Center Chair, EORTC Scientific Chairs Council

Disclosures

- No personal financial disclosures
- Sponsored Research at Gustave Roussy Cancer Center

4D Pharma, Abbvie, Amgen, Aptitude Health, AstraZeneca, BeiGene, Blueprint Medicines, Boehringer Ingelheim, Celgene, Cergentis, Chugai pharmaceutical, Cristal Therapeutics, Daiichi-Sankyo, Eli Lilly, EISAI, Genzyme Corporation, GSK, Inivata, IPSEN, Janssen, Onxeo, OSE immunotherapeutics, Pfizer, Roche-Genentech, Sanofi, Takeda, Tolero Pharmaceuticals, Turning Point Therapeutics

Relapsed NSCLC after immunotherapy

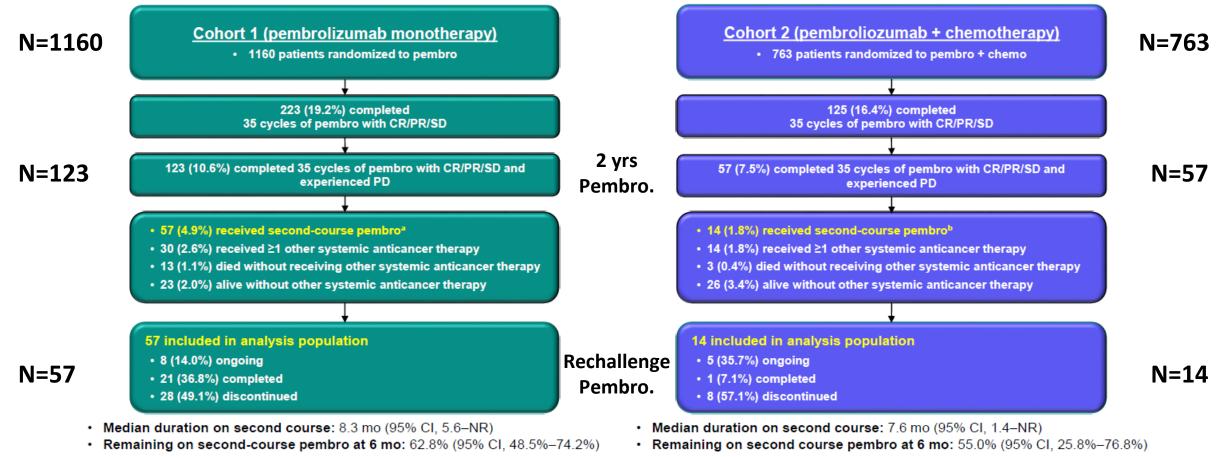

- Patient stopped their previous immunotherapy regimen
 - Because end of treatment was planned

ICI strategy is relevant in all stages of NSCLC

Reck – JCO 2021 * Gray – WCLC 2020 * Spigel – ASCO 2021 * Felip –Lancet 2021 (MDFS/OS: median disease free survival / Overall Survival. NE: Not Estimated) Courtesy of J.Remon

ICI strategy is relevant in all stages of NSCLC

Reck – JCO 2021 * Gray – WCLC 2020 * Spigel – ASCO 2021 * Felip –Lancet 2021 (MDFS/OS: median disease free survival / Overall Survival. NE: Not Estimated) Courtesy of J.Remon


A patient with stage IV adenocarinoma has received 4 cycles of pemetrexed-carboplatin and pembrolizumab up to 2 years. He is off treatment for 18 months. He has a diffuse relapse (bone, adrenal, lung). What is your favorite option ?

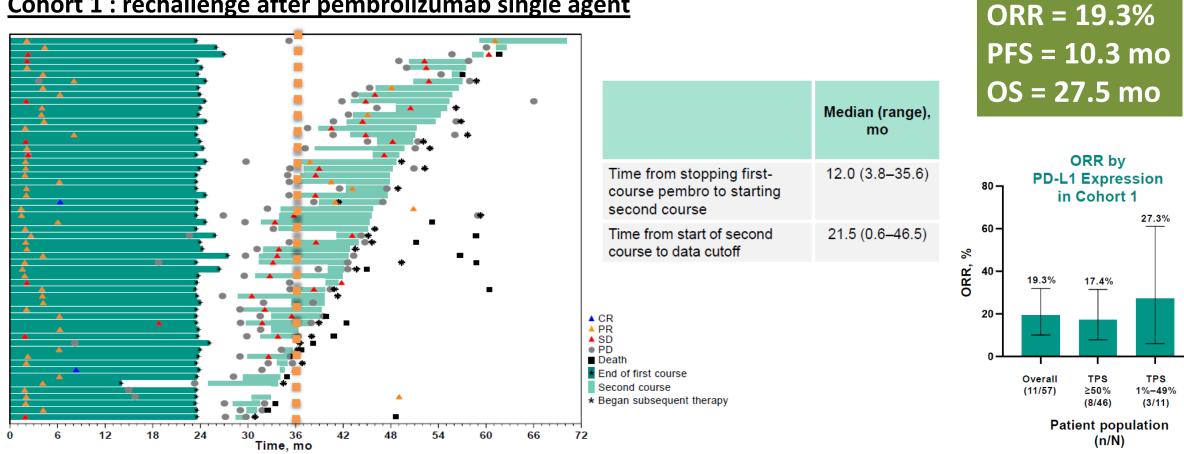
- Docetaxel
- Docetaxel + nintedanib
- Pembrolizumab
- Paclitaxel-carboplatin
- Pemetrexed-carboplatin-pembrolizumab

Pembrolizumab rechallenge after 2 yrs pembrolizumab

A pooled analysis of 3 randomized phase III trials

^a1 patent completed 35 cycles after assessment of PD by BICR but PR per investigator; 1 patient did not complete 35 cycles because of CR assessment.

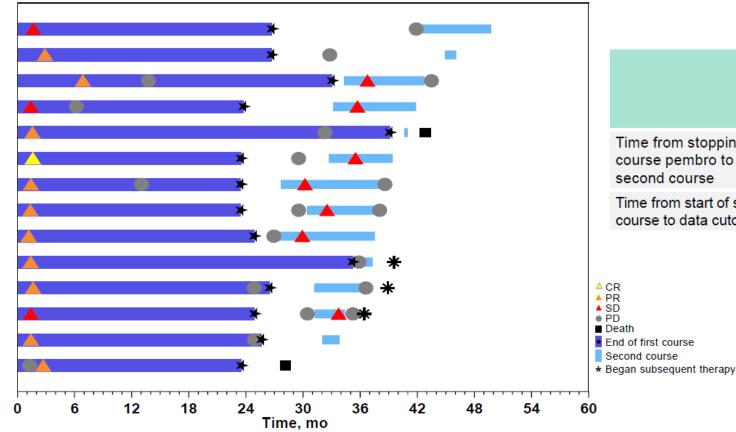
^b2 patients did not complete 35 cycles but did receive 2 years of treatment.


Database cutoff dates: Jun 1, 2020 (KN024); Apr 28, 2021 (KN042); Oct 1, 2021 (KN598); Aug 28, 2020 (KN189); Sep 30, 2020 (KN407).

Pembrolizumab rechallenge after 2 yrs pembrolizumab

A pooled analysis of 3 randomized phase III trials

Cohort 1 : rechallenge after pembrolizumab single agent

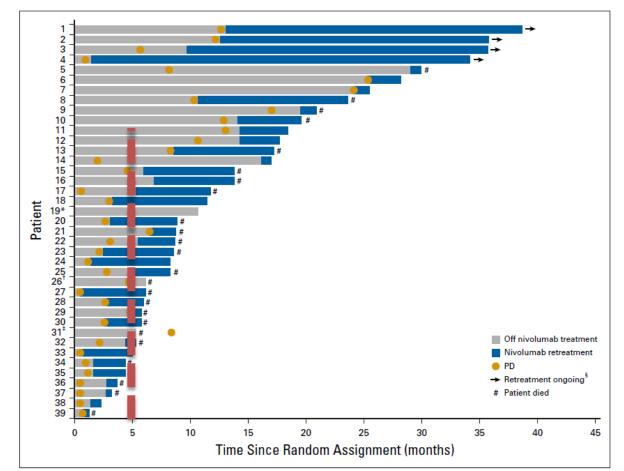

^aPatient stopped treatment at cycle 21 due to CR assessed per investigator and not BICR (PR). At the time of progression, patient was eligible for second-course pembrolizumab, per protocol. Database cutoff dates: Jun 1, 2020 (KN024); Apr 28, 2021 (KN042); Oct 1, 2021 (KN598); Aug 28, 2020 (KN189); Sep 30, 2020 (KN407).

Pembrolizumab rechallenge after 2 yrs pembrolizumab

A pooled analysis of 3 randomized phase III trials

Cohort 2 : rechallenge after chemo-pembrolizumab

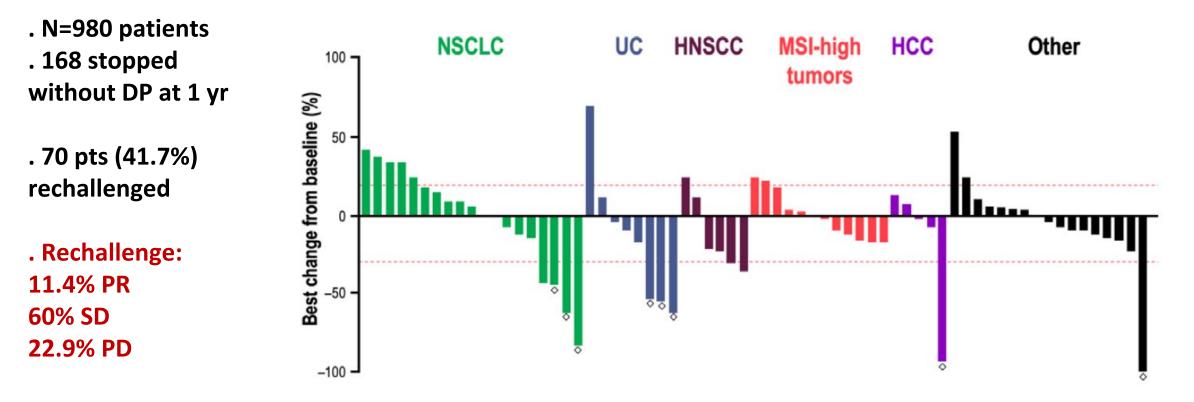
Median (range),
moTime from stopping first-
course pembro to starting
second course5.4 (0.9–18.2)Time from start of second
course to data cutoff10.3 (1.9–18.0)


ORR = 0 % PFS = 7.7 mo OS = NR

Nivolumab rechallenge after 1 yrs nivolumab

CheckMate 153: Continuous vs 1-Year Nivolumab

39 patients were retreated with nivolumab.



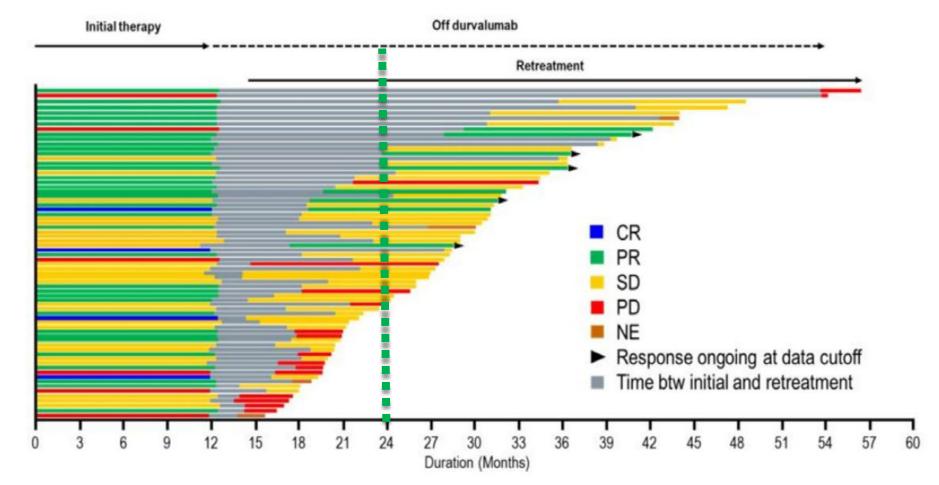
Watherhouse JCO 2020

Durvalumab rechallenge after 1 yrs durvalumab

Phase I/II study evaluating durvalumab in advanced solid tumors (NCT01693562

Confirmed PR

Durvalumab rechallenge after 1 yrs durvalumab

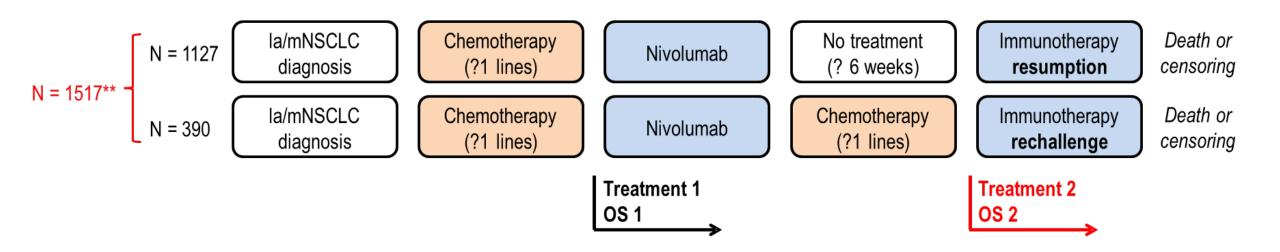

Phase I/II study evaluating durvalumab in advanced solid tumors (NCT01693562

. N=980 patients . 168 stopped without DP at 1 yr

. 70 pts (41.7%) rechallenged

. Median time off treatment was 6.8 mo

. Rechallenge: median PFS 5.2 mo Median OS 23.8 mo



Sheth J Immunother Cancer. 2020

Nivolumab – French cohort

1517 adult patients with locally advanced or metastatic NSCLC treated twice with immunotherapy

*Discontinuation was defined as no new treatment for \geq 6 weeks after

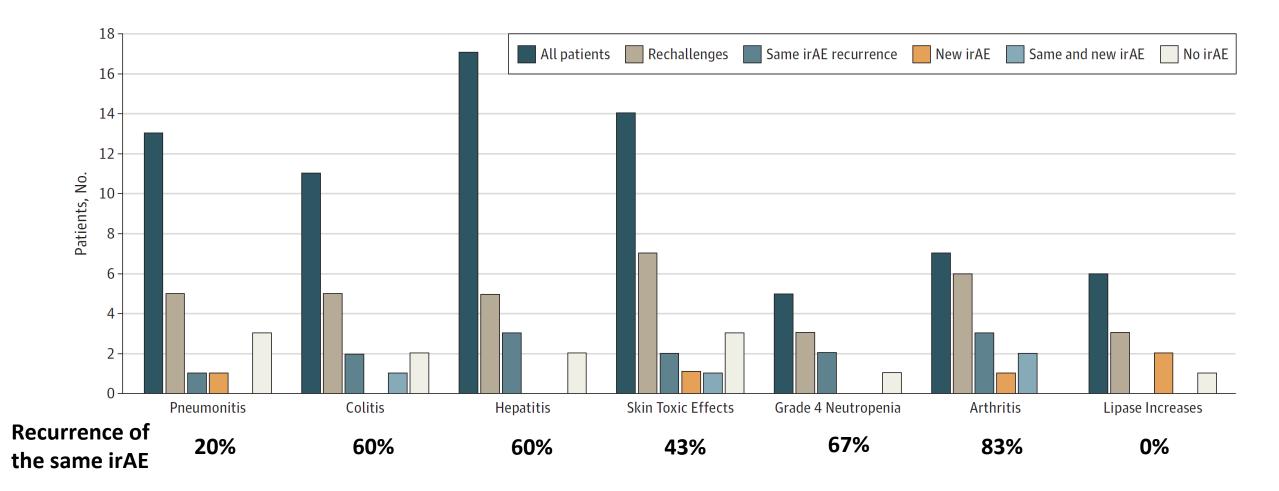
the previous treatment or death.

**1511 patients treated with nivolumab and 6 with pembrolizumab

Giaj Lebra WCLC 2019

Overall survival after rechallenge according to the previous benefit

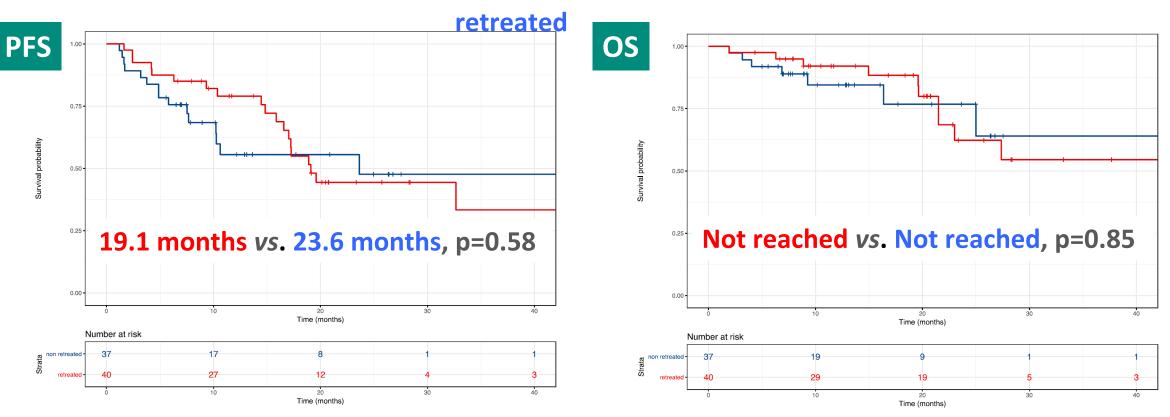
Giaj Levra Lung Cancer 2020


Relapsed NSCLC after immunotherapy

- Patient stopped their previous immunotherapy regimen
 - Because end of treatment was planned
 - Because of a toxicity

Which toxicities at rechallenge

n=93, any tumor type



Simonaggio Jama Oncol 19

Outcome with rechallenge after irAEs

N= 93. Rechallenge 43%. Recurrent or new irAEs in 55%, not more severe than 1st irAEs

Retreated vs. non-

Courtesy of J.Remon

Simonaggio Jama Oncol 19

ICI after ir-AE's with previous ICI

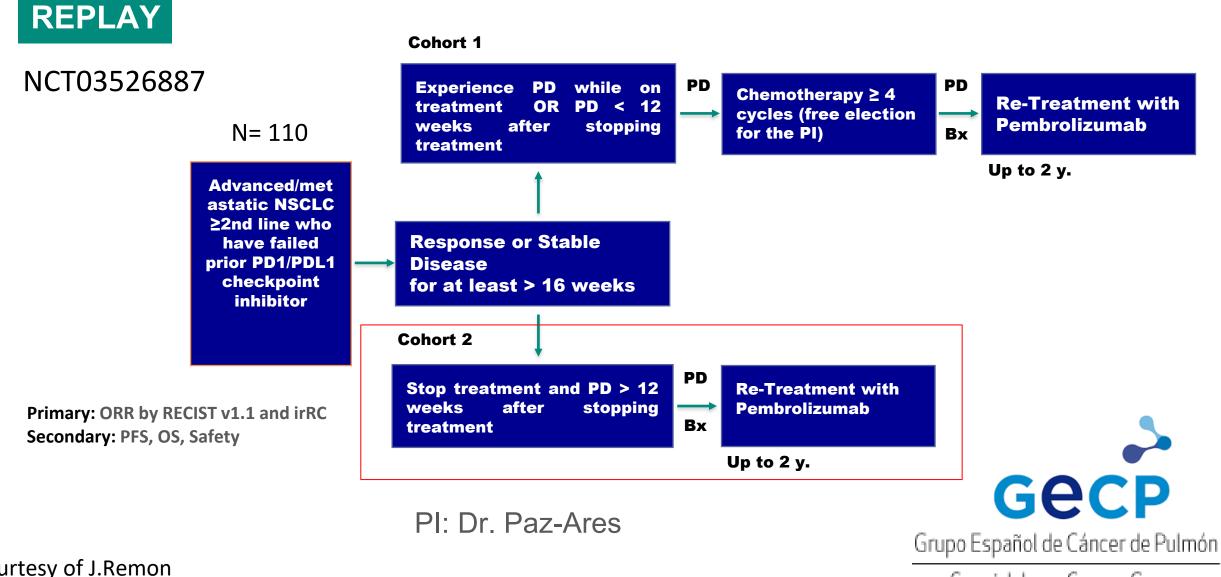
	Santini	Simonaggio	Abu-Sbeih	Naidoo	Pollack	Delaunay
N	482	93	167 with colitis	43 pneumonitis	80	64 ILD
Tumor	NSCLC	Multiple (N=15 NSCLC)	Multiple (N=27 NSCLC)	Multiple (N=9 NSCLC)	Melanoma	Multiple (N=45 NSCLC)
irAE's	68 (14%)	93	167	43	80	64
Retreat.	38	40	167	12	80	10
New/ Recurr.	52% (40% G≥3)	55% (60% G≥3)	34% (82% IS)	25% (0% G≥3)	18% (57% G≥3)	30% (0% G≥3)

~30-50% Retreated. **~30-50%** New/Recurrent irAEs. **~50%** G≥ 3. Not correlation with outcome

*For patients with previous RR to ICI. Ns: non significant. IS: 82% required immunosuppressive therapy

Santini – Cancer Immunol Res 2018 * Simonaggio – JAMA Oncol 2019 * Abu-Sbeih – JCO 2019 * Naidoo – JCO 2017 * Pollack – Ann Oncol 2018 * delaunay – ERJ

ICI after ir-AE's with previous ICI


	Santini	Simonaggio	Abu-Sbeih	Naidoo	Pollack	Delaunay
Ν	482	93	167 with colitis	43 pneumonitis	80	64 ILD
Tumor	NSCLC	Multiple (N=15 NSCLC)	Multiple (N=27 NSCLC)	Multiple (N=9 NSCLC)	Melanoma	Multiple (N=45 NSCLC)
irAE's	68 (14%)	93	167	43	80	64
Retreat.	38	40	167	12	80	10
New/ Recurr.	52% (40% G≥3)	55% (60% G≥3)	34% (82% IS)	25% (0% G≥3)	18% (57% G≥3)	30% (0% G≥3)
Interval irAE's - rechallenge	32 days (7–177)	27 days (7-168)	49 days (23-136)	-	58 days (14–395)*	-

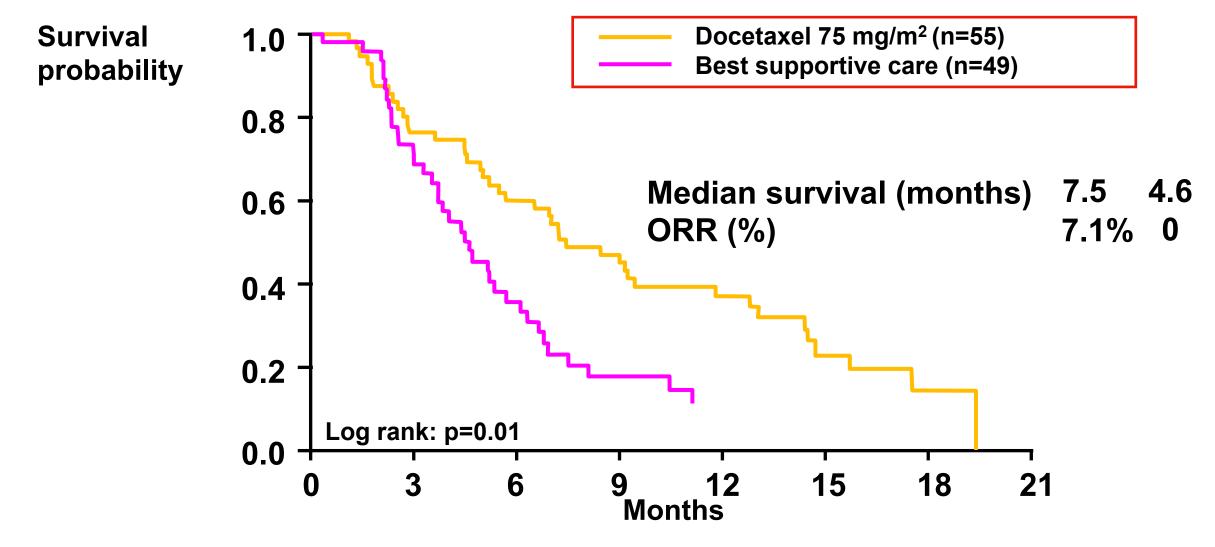
*interval between last dose of combination therapy and the first dose of rechallenge

Santini – Cancer Immunol Res 2018 * Simonaggio – JAMA Oncol 2019 * Abu-Sbeih – JCO 2019 * Naidoo – JCO 2017 * Pollack – Ann Oncol 2018 * delaunay – ERJ

Multi-center exploratory phase II trial of Pembrolizumab (200 mg) as second or further line with NSCLC who have failed to a prior treatment with anti-PDL1 drug

Courtesy of J.Remon

Spanish Lung Cancer Group

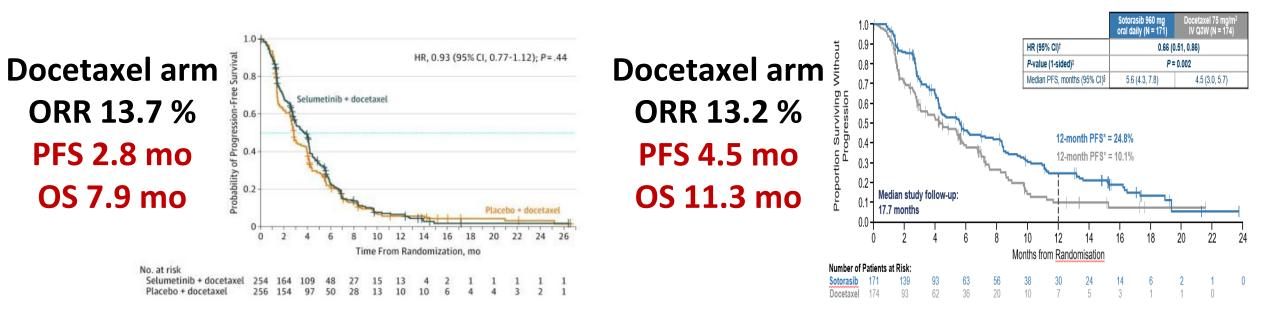


Relapsed NSCLC after immunotherapy

- Patient stopped their previous immunotherapy regimen
 - Because end of treatment was planned
 - Because of a toxicity
- Patient is receiving first line immunotherapy (and chemoth.)
 - Docetaxel, standard of care

Docetaxel – approved in 2000

Shepherd JCO 2000



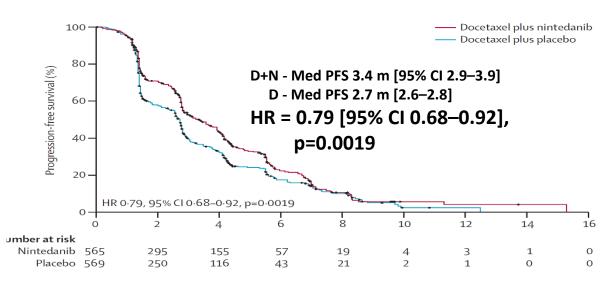
Impact of first line immunotherapy on docetaxel?

Efficacy of 2nd line docetaxel in patients with KRAS mutated NSCLC

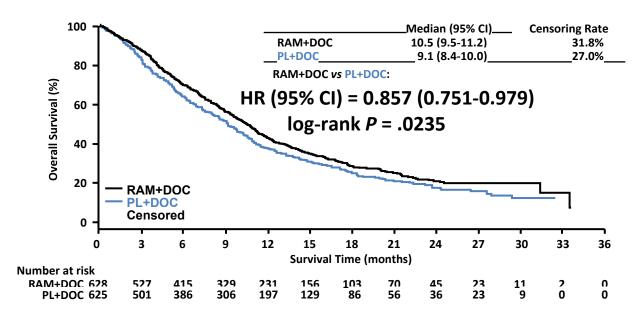
Docetaxel +/- selumetinib After chemotherapy

Docetaxel vs sotorasib After chemo-immunotherapy

Janne JAMA 2017 Johnson ESMO 2022


Relapsed NSCLC after immunotherapy

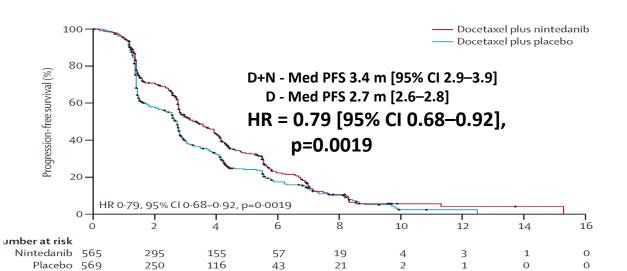
- Patient stopped their previous immunotherapy regimen
 - Because end of treatment was planned
 - Because of a toxicity
- Patient is receiving first line immunotherapy (and chemoth.)
 - Docetaxel, standard of care
 - Current options


Anti-angiogenic agents in 2nd line Data from randomized trials

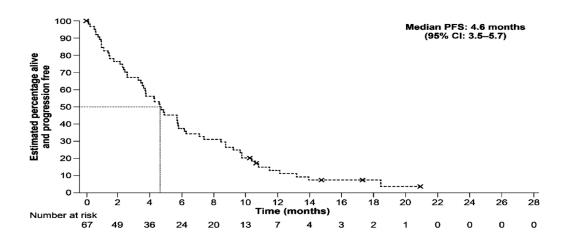
PFS - Docetaxel +/- nindetanib

OS benefit in adenocarcinoma PFS benefit in refractory pts (HR= 0.67 (0.43-1.04,p=0.0725).

OS - Docetaxel +/- ramucirumab


OS benefit in SCC and non SCC

Perol ASCO 14, Reck Lancet Oncol 14



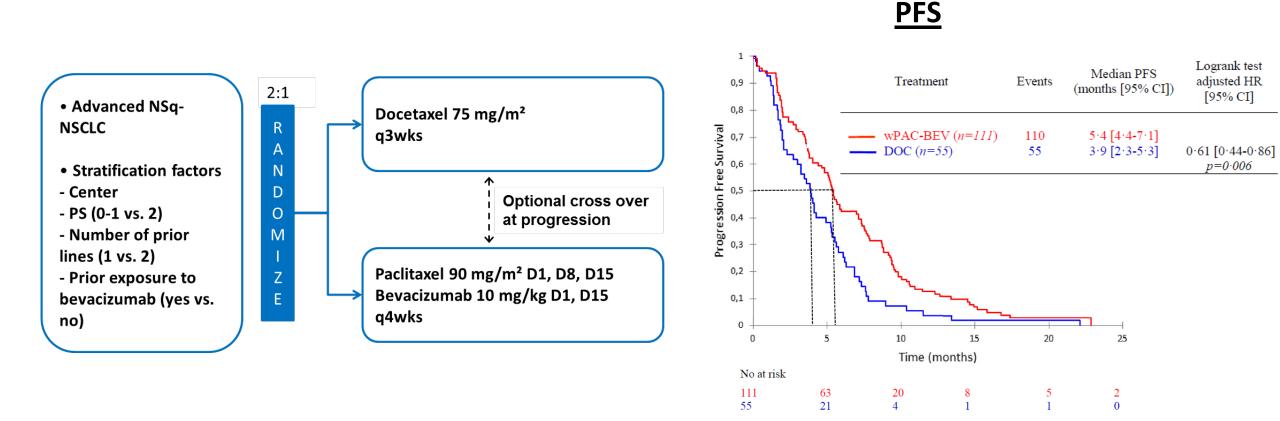
Anti-angiogenic agents in 2nd line Impact of previous immunotherapy

PFS - Docetaxel +/- nindetanib

Median PFS Docetaxel + nintedanib : 3.4 mo Median OS : 12.6 mo

Median PFS Docetaxel + nintedanib : 4.6 mo Median OS : 8;8 mo

Reck Lancet Oncol 14, Reck lung cancer 20

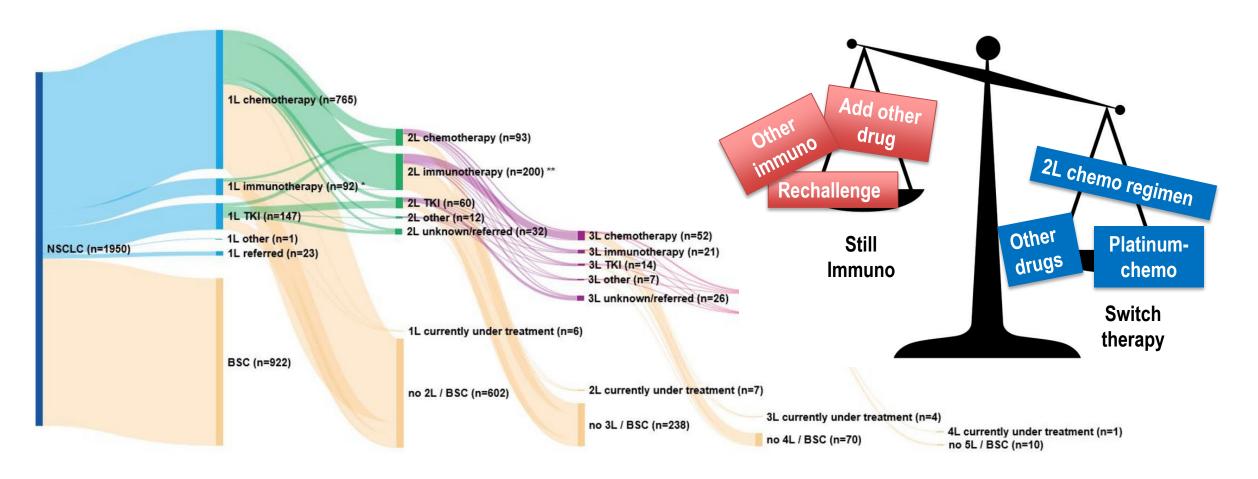

Anti-angiogenic agents in 2nd line Trial after previous immunotherapy

<u>OS</u> RP 14.5 mo 75 Overall Survival (%) SOC 11.6 mo 50 Phase II randomized study of ramucirumab plus pembrolizumab versus standard of care for advanced non-small cell lung cancer previously treated 25 with immunotherapy—Lung-MAP non-matched sub-study S1800A 21 Stratified by 1) PD-L1 expression, 2) histology, Time Since Substudy Random Assignment (months) Primary endpoint: OS NCT03971474 No. at risk (No. of events): 3) intent to receive RP Secondary endpoints: RR, DCR, 69 (0) 61(7) 54 (14) 47 (21 14(42)(43) 1445 ramucirumab in standard SOC (Investigator's choice) 67 (D) DoR, PFS, Toxicities of care arm PFS 100 Randomization ARM A ARM B RP 4.5 mo Investigator's Choice Pembrolizumab 75 200 mg Q3W for Standard of Care SOC 52. mo up to 35 cycles docetaxel + ramucirumab; R (1:1) PFS (%) docetaxel; gemcitabine; 50 N= 130 Ramucirumab pemetrexed (nonSCC only) 10 mg/kg Q3W 25 24 12 21 27 Time Since Substudy Random Assignment (months) No. at risk (No. of events); 47 (21) 13 (53) 5 (57) 1 (57) 0 (57 69 (0) 0.4521 SOC (investigator's choice) 45 (10) 25 (40) 14 (51) 3 (61) 2 (62) (62) 0 (62)

Reckamp JCO 2022

IFCT-1103 ULTIMATE study Weekly paclitaxel + bevacizumab vs. docetaxel

Cortot WCLC 16, Cortot EJC 2020

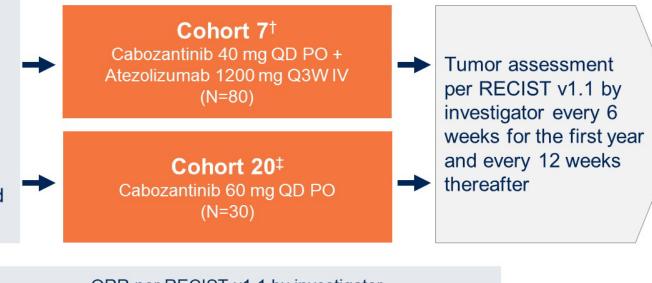


Relapsed NSCLC after immunotherapy

- Patient stopped their previous immunotherapy regimen
 - Because end of treatment was planned
 - Because of a toxicity
- Patient is receiving first line immunotherapy (and chemoth.)
 - Docetaxel, standard of care
 - Current options
 - Try to tackle immunoresistance

We need more than docetaxel

Cramer-van der Welle CM et al, Scientific Reports 2021

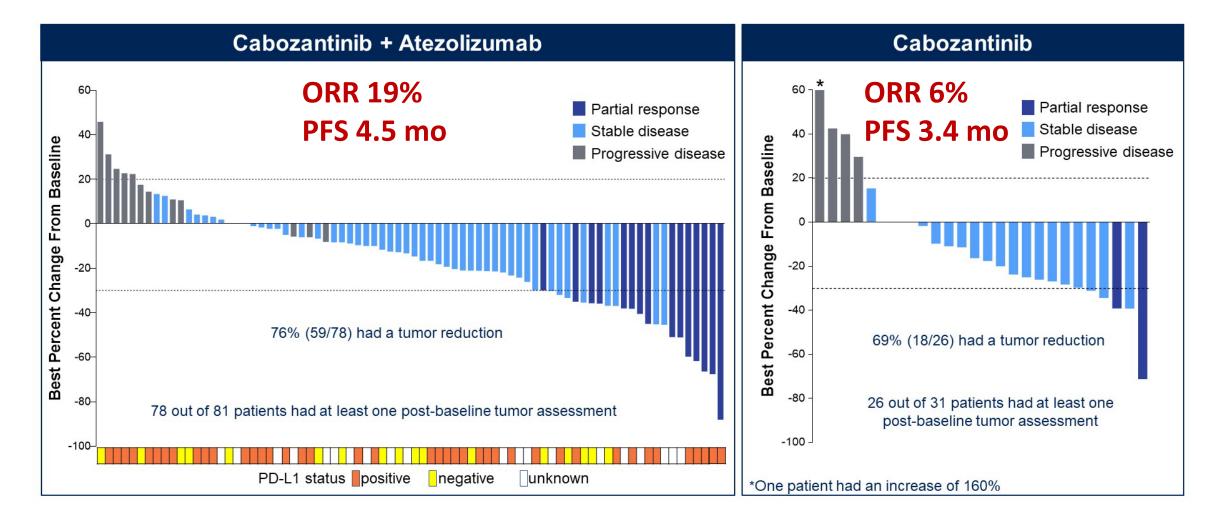

Courtesy of Laura Mezquita

Combination of VEGFR TKI + Immunotherapy Example with cabozantinib and atezolizumab – COSMIC 021

Key Eligibility Criteria

- Stage IV non-squamous NSCLC with radiographic progression on or after one prior ICI for metastatic disease
- ≤2 prior lines of systemic anticancer therapy*
- Patients with known *EGFR*, *ALK*, *ROS1*, or *BRAF* V600E tumor mutations excluded

Primary endpoint:	ORR per RECIST v1.1 by investigator
Secondary endpoint:	Safety (AEs, SAEs, AESIs)
Exploratory endpoints:	DOR, PFS per RECIST v1.1 by investigator, OS


*Prior treatment with platinum-based chemotherapy was not required. [†]Patients were initially enrolled to cohort 7 (n=35). Following an initial assessment of clinical activity, subsequent patients were randomized between cohorts 7 and 20. [‡]Patients in cohort 20 may receive combination therapy after radiographic disease progression per RECIST v1.1 by the investigator.

SAEs, serious adverse events; AESIs, adverse events of special interest

Neal ASCO 2022

Combination of VEGFR TKI + Immunotherapy Example with cabozantinib and atezolizumab – COSMIC 021

Combination of VEGFR TKI + Immunotherapy Example with cabozantinib and atezolizumab – COSMIC 021

	Cabozantinib + Ate	Cabozantinib + Atezolizumab (N=81)		nib (N=31)†
	Any grade	Grade 3/4	Any grade	Grade 3/4
Any TEAE, n (%)	81 (100)	43 (53)	31 (100)	22 (71)
Diarrhea	36 (44)	1 (1)	16 (52)	3 (10)
Decreased appetite	30 (37)	1 (1)	11 (35)	1 (3)
Fatigue	29 (36)	4 (5)	11 (35)	2 (6)
Nausea	28 (35)	2 (2)	15 (48)	2 (6)
Asthenia	24 (30)	5 (6)	12 (39)	3 (10)
Constipation	21 (26)	0	5 (16)	0
Pyrexia	20 (25)	0	2 (6)	0
AST increased	19 (23)	2 (2)	9 (29)	0
Hypertension	19 (23)	5 (6)	10 (32)	7 (23)
Vomiting	19 (23)	0	9 (29)	1 (3)
ALT increased	17 (21)	3 (4)	10 (32)	1 (3)
PPE	17 (21)	3 (4)	6 (19)	0
Hypomagnesemia	16 (20)	1 (1)	5 (16)	0
Weight decreased	16 (20)	3 (4)	4 (13)	2 (6)
Pneumonitis	3 (4) [‡]	0	0	0
Gastric ulcer hemorrhage	0	0	1 (3)§	0

AEs leading to cabozantinib dose reductions, n (%)	32 (40)
AEs leading to cabozantinib dose hold, n (%)	60 (74)

Neal ASCO 2022

ICB plus antiangiogenic

	COSMIC-021 Cohort 7	LUNG-MAP S1800A	MRTX-500	Phase II	Retrospective	Phase I
Schedule	Cabozantinib Atezolizumab	Ramucirumab Pembrolizumab	Sitravatinib Nivolumab	Bevacizumab Atezolizumab	Ramucirumab Atezolizumab	Lenvatinib Pembrolizumab
Ν	80	69	68	24	21	21
ORR (%)	19*	22	18	13	4.8	33**
PFS (mo.)	4.5*	4.5	5.7	5.6	3.4	NR
OS (mo.)	13.8*	14.5	14.9	14.0	16.5	NR
G≥3 TRAE (%)	53	42	66	4.2	43	42
Phase III	CONTACT1		SAPHIRE			

*RR: PD-L1<1%: 11% ; PD-L1≥1%: 20%. PFS: PD-L1<1%: 4.7; PD-L1≥1%: 5.4. OS: PD-L1<1%: 10.4 ; PD-L1≥1%: 17.8

** Include treatment naïve population.

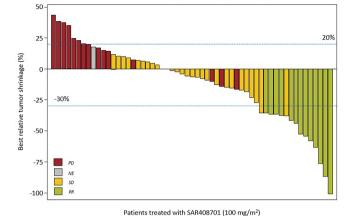
Neal - ASCO 2022 * Reckamp – JCO 2022 * Leal – ESMO 2021 * Lee – JTO 2022 * Herzog – Lung Cancer 2022* Brose – ASCO 2019 * Taylor – JCO 2020 (There is no intention of cross trial comparison)

Courtesy of J.Remon

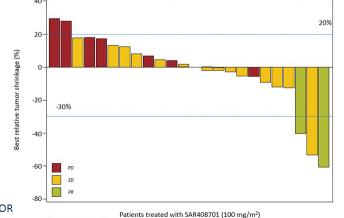
Combination of VEGFR TKI + Immunotherapy

- Ongoing multiarm randomized phase II trials exploring various IO combinations and potential biomarkers that may lead to specific phase III trials
- Many phase III trials are ongoing with single agent docetaxel as a shared comparator
 - Few are based on biomarker selection or make the distinction between primary and acquired resistance to CPI¹
 - > Identification of patients deriving benefit from these combinations may be difficult

Trial	2 nd /3 rd line target population	Experimental arm	Control	Primary endpoint
Sapphire NCT03906071	Non-squamous Prior PD-1/L1 therapy for ≥4 months	Sitravatinib + nivolumab	Docetaxel	OS
Contact-01 NCT04471428	All comers	Cabozantinib + atezolizumab	Docetaxel	OS
LEAP-008 NCT03976375	All comers	Lenvatinib + pembrolizumab	Docetaxel	PFS and OS


Antibody drug conjugates (ADC) : CAECAM5 Example with tusamitamab ravtansine

Best Overall Response

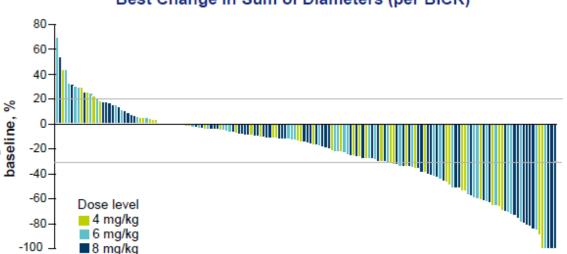

Overall Population

Response, n (%)	High expressors (n = 64)	Moderate expressors (n = 28)
ORR [95% CI]	13 (20.3%) [12.27-31.71]	2 (7.1%) [1.98-22.65]
Confirmed PR	13 (20.3%)	2 (7.1%)
SD	28 (43.8%)	15 (53.6%)
DCR	41 (64.1%)	17 (60.7%)
PD	21 (32.8%)	10 (35.7%)
NE	2 (3.1%)	1 (3.6%)

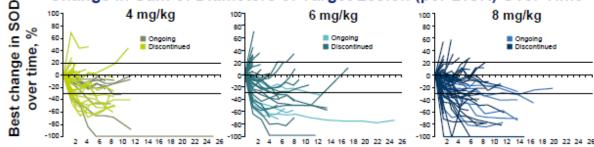
Best relative tumor shrinkage: Patients who had unconfirmed PR (>30% decrease) were counted as SD for BOR
Patients treated with SAR408701 (1
DCR, disease control rate; NE, not evaluable; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Gazzah ASCO 2020

Antibody drug conjugates (ADC) : TROP2 **Example with datopotamab-deruxtecan – TROPION 01**


	Dato-DXd dose						
Patients ^a	4 mg/kg (n=50)	6 mg/kg (n=50)	8 mg/kg (n=80)	from			
ORR, n (%) ^b	12 (24)	14 (28)	19 (24)	8			
CR, n (%)	0	0	1 (1)	in SC			
PR, n (%) ^ь	12 (24)	14 (28)	18 (23)				
SD, n (%)	25 (50)	20 (40)	42 (53)	change			
Non-CR/PD, n (%)	1 (2)	2 (4)	2 (3)				
PD, n (%)	7 (14)	10 (20)	8 (10)	Best			
NE, n (%)	5 (10)	5 (10)	9 (11)				
DOR, median (95% CI), mo	NE (2.8-NE)	10.5 (5.6-NE)	9.4 (5.8-NE)	9			

Antitumor activity was observed at 4-, 6-, and 8-mg/kg doses


Most responses were durable over time, including a median

duration of response of 10.5 months in the 6-mg/kg cohort

Best Overall Response (BICR)

Change in Sum of Diameters of Target Lesion (per BICR) Over Time

Data cutoff: April 6, 2021.

of Dato-DXd

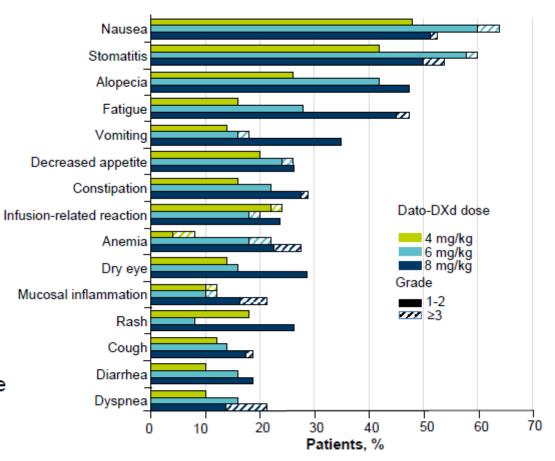
٠

٠

BICR, blinded independent central review; CR, complete response; DOR, duration of response; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SOD, sum of diameters; SD, stable disease. a Includes response-evaluable patients who had ≥1 postbaseline tumor assessment or discontinued treatment. b ORR and CR/PR include 1 response in the 6-mg/kg cohort that is pending confirmation.

Best Change in Sum of Diameters (per BICR)

Meric Berstam ASCO 2021



Antibody drug conjugates (ADC) : TROP2 Example with datopotamab-deruxtecan – TROPION 01

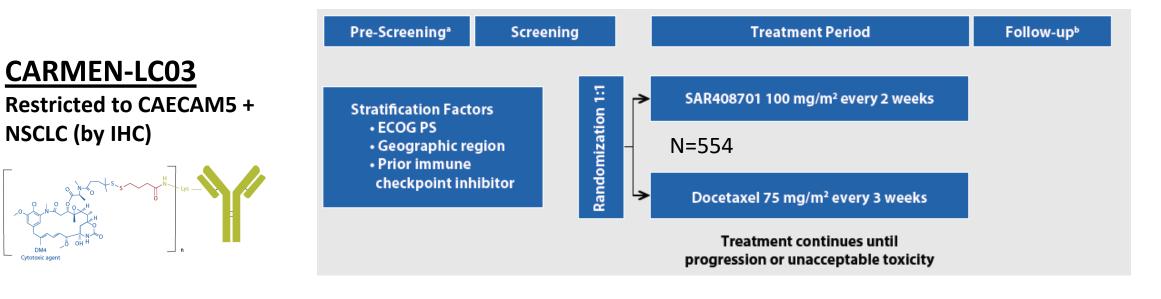
	Dato-DXd dose					
Patients, n (%)	4 mg/kg (n=50)	6 mg/kg (n=50)	8 mg/kg (n=80)			
TEAE Grade ≥3	49 (98) 15 (30)	49 (98) 27 (54)	80 (100) 46 (58)			
Drug-related TEAE Grade ≥3	47 (94) 7 (14)	41 (82) 13 (26)	78 (98) 28 (35)			
Serious TEAE Grade ≥3	10 (20) 10 (20)	24 (48) 18 (36)	40 (50) 37 (46)			
Dose adjustments TEAEs associated with discontinuation	<mark>8 (</mark> 16)	7 (14)	19 (24)			
TEAEs associated with dose interruption	4 (8)	15 (30)	29 (36)			
TEAEs associated with dose reduction	1 (2)	5 (10)	23 (29)			
ILD adjudicated as drug related ^a	5 (10)	3 (6)	11 (14)			
Grade ≤2	4 (8)	2 (4)	7 (9)			
Grades 3-4	1 (2)	1 (2)	1 (1)			
Grade 5	0	0	3 (4)			

Overall Safety Summary

TEAEs in ≥15% of Patients^b

 The safety profile was manageable with mainly mild/moderate toxicity; TEAEs were primarily nonhematologic

Data cutoff: April 6, 2021.


ILD, interstitial lung disease; TEAE, treatment-emergent adverse event.

^a Cases of ILD adjudicated as drug related comprised 5 patients in the 4-mg/kg cohort (1 grade 1, 3 grade 2, 1 grade 3), 3 patients in the 6-mg/kg cohort (2 grade 2, 1 grade 4), and 11 patients in the 8-mg/kg cohort (2 grade 1, 5 grade 2, 1 grade 3, 3 grade 5). ^b Of 180 patients (4 mg/kg [n=50]; 6 mg/kg [n=50]).

Meric Berstam ASCO 2021

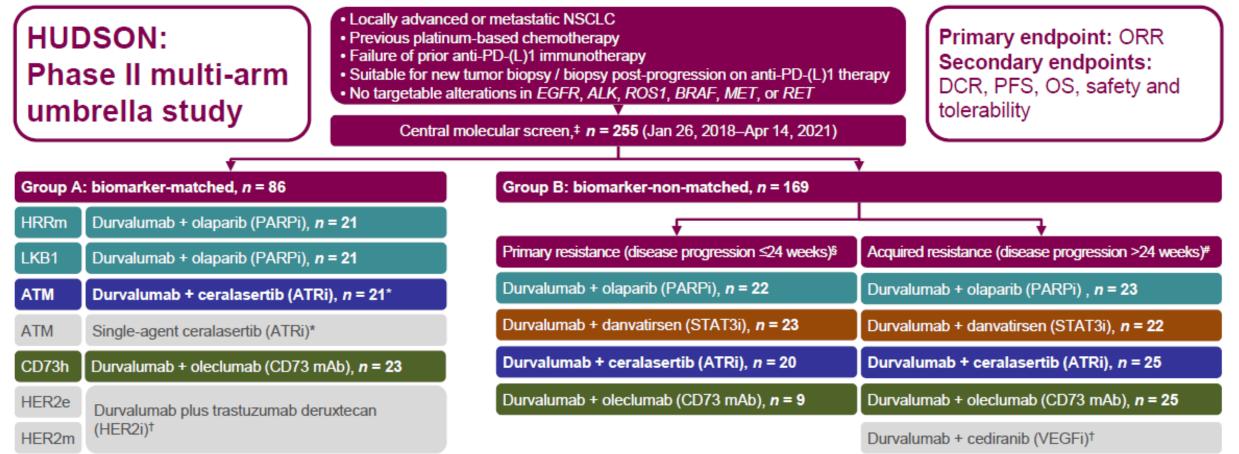
Antibody drug conjugates (ADC) Example of ongoing phase III trials

TROPION-Lung01

All comers

Stage IV NSCLC Without actionable mutations After chemo. And immunotherapy Randomization 1:1

Datopotamab-deruxtecan 6mg/kg q3w


N=590

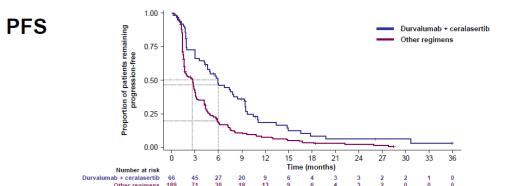
Docetaxel 75 mg/m² q3w

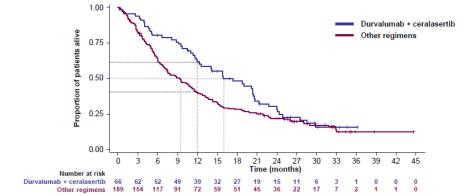
Johnson ASCO 2020

Immunotherapy + "a booster" Example of the ATRi ceralasertib

"Ongoing. †Data not mature. ‡Immunohistochemistry was also performed. \$/# Progression on prior anti-PD-(L)1 therapy within 24 weeks / after > 24 weeks.

ATM, ataxia telangiectasia mutated; ATRi, ataxia telangiectasia receptor inhibitor; CD73(h), (high expression of) cluster of differentiation 73; DCR, disease control rate; HER2e/i/m, human epidermal growth factor receptor 2


expression/inhibitor/mutated; HRRm, homologous recombination repair mutated; LKB1, LKB1/STK11 aberration; mAb, monoclonal antibody; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PARPi, poly ADP ribose polymerase inhibitor; PD-(L)1, programmed death (ligand)-1; PFS, progression-free survival; STAT3i, signal transducer and activator of transcription 3 inhibitor; VEGFi, vascular endothelial growth factor inhibitor.


Immunotherapy + "a booster" Example of the ATRi ceralasertib

	Durvalumab + ceralasertib n=66	Durvalumab + olaparib n=87	Durvalumab + danvatirsen n=45	Durvalumab + oleclumab n=57
Median treatment duration, months Durvalumab* Other agent [†]	7.3 6.3	3.7 3.2	2.8 2.8	2.9 2.9
12-week disease control rate, %	60.6	36.8	26.7	29.8
24-week disease control rate, %	42.4	17.2	13.3	15.8
ORR, %	16.7%	4.6%	0%	1.8%

OS

	Durvalumab + ceralasertib. n=66	Other regimens n=189	Durvalumab + olaparib, n=87	Durvalumab + danvatirsen, n=45	Durvalumab + oleclumab, n=57
Median PFS, months (80% CI)	6.0 (4.6–7.5)	2.7 (1.8–2.8)	2.7 (1.6–3.0)	2.9 (1.7–3.1)	1.8 (1.6–2.7)
6-month PFS, % (80% CI)	46.3 (37.9–54.2)	18.0 (14.5–21.9)	18.7 (13.5–24.5)	18.8 (11.5–27.6)	16.6 (10.8–23.6)

	Durvalumab + ceralasertib. n=66	Other regimens n=189	Durvalumab + olaparib, n=87	Durvalumab + danvatirsen, n=45	Durvalumab + oleclumab, n=57
Median OS, months (80% CI)	15.9 (14.1–20.3)*	9.4 (7.5–10.6)	9.4 (6.9–10.8)	7.9 (6.0–10.6)	11.0 (7.6–13.5)
12-month OS, % (80% CI)	61.6 (53.4–68.8)	39.7 (35.1–44.3)	40.8 (34.0-47.5)	28.8 (20.2–38.0)	46.2 (37.5–54.5)

PFS, progression-free surv

*Data are still accruing; this median value for OS may change. OS, overall survival.

Conclusion

- Rechallenge of immunotherapy is an option

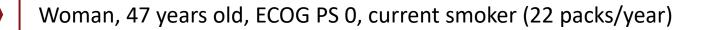
 Free interval > 1 year better?
- Need for new option beyond docetaxel
 - Immunotherapy + targeted therapies (VEGFRi, ATRi) ?
 - ADCs?
- Understanding the biology of primary and acquired resistance to immunotherapy is key

Tumor Board Discussion

Moderator: Solange Peters, MD Case presenters: Francesca Fusco, MD, and Luis Angel Leon Mateos, MD

Patient Case 1

Francesca Fusco, MD

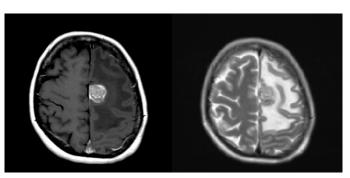

Global Lung Cancer Academy

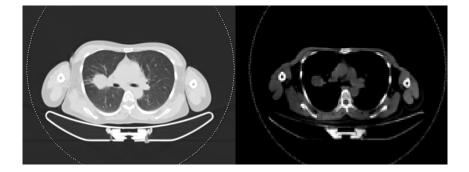
Sharing Best Practices to Optimize Patient Care in Europe

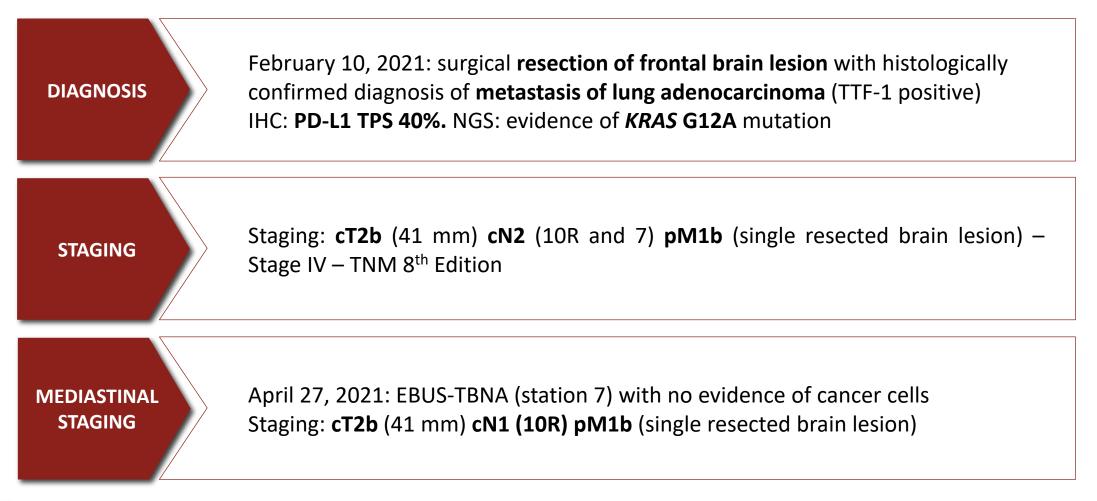
November 7 and 14, 2022

Local Case 1: First-Line Chemoimmunotherapy in NSCLC

Francesca Fusco, MD Regina Elena National Cancer Institute Rome, Italy




No relevant medical history


Symptoms: confusion and speech impairment

February 6, 2021: brain MRI shows single left frontal lesion with perilesional edema. Chestabdomen CT scan reveals right upper lobe lung lesion

What would you have done?

Locoregional treatment

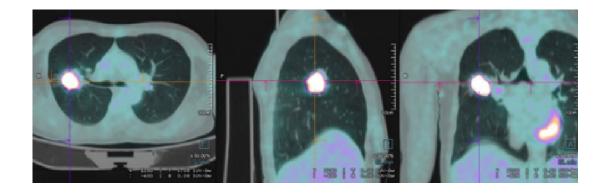
First-line platinum-based chemotherapy

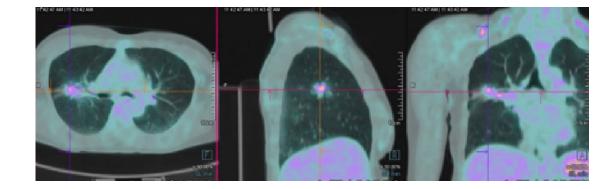
First-line chemoimmunotherapy

First-line immunotherapy

March 2, 2021: SRS (surgical bed) – 24 Gy in 3 fractions

May 25, 2021: first-line chemoimmunotherapy with **carboplatin AUC 5** on day 1, **pemetrexed 500 mg/m²** on day 1, **pembrolizumab 200 mg** on day 1 q3w AEs: **anemia G2 and neutropenia G3**


August 6, 2021: PET-CT scan performed after 4 cycles shows **partial response in the target lesion. Brain MRI: NED**



Case Presentation

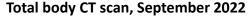
Baseline (March 2021)

+4 cycles (August 2021)

Partial response on lung target lesion

What would you have done?

Maintenance therapy (pemetrexed and pembrolizumab)


Locoregional treatment (surgery)

Locoregional treatment (radiotherapy)

August 24, 2021: **right upper lobectomy and mediastinal lymph node dissection** (1, 2R, 4R, 7, 8, 9R, 10R, 11R) with **pathologic complete response, ypT0 pN0** (0/16)

September 20, 2021: maintenance therapy with pembrolizumab 200 mg q3w (pemetrexed not included due to hematologic toxicity) for 1 year Last tumor assessment (TB-CT scan) on September 2022: NED

Case Presentation

What would you have done?

Continue maintenance treatment

Follow up

Thank you for your attention!

Thanks to My Team Regina Elena National Cancer Institute – Rome

Medical Oncology 2 Division Federico Cappuzzo, MD – Chief Silvia Carpano, MD Corrado Orciuolo, MD

Fellows Francesca Fusco, MD Serena Ceddia, MD

Phase I Clinical Centre and Precision Oncology Lorenza Landi, MD – Chief Gabriele Minuti, MD

francesca.fusco@ifo.it

Patient Case 2

Luis Angel Leon Mateos, MD

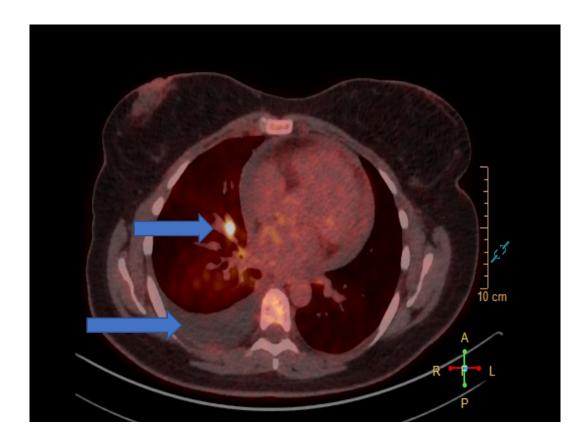
Case 1: ALK Inhibitor

Luis León, MD Medical Oncology Department University Hospital Santiago de Compostela

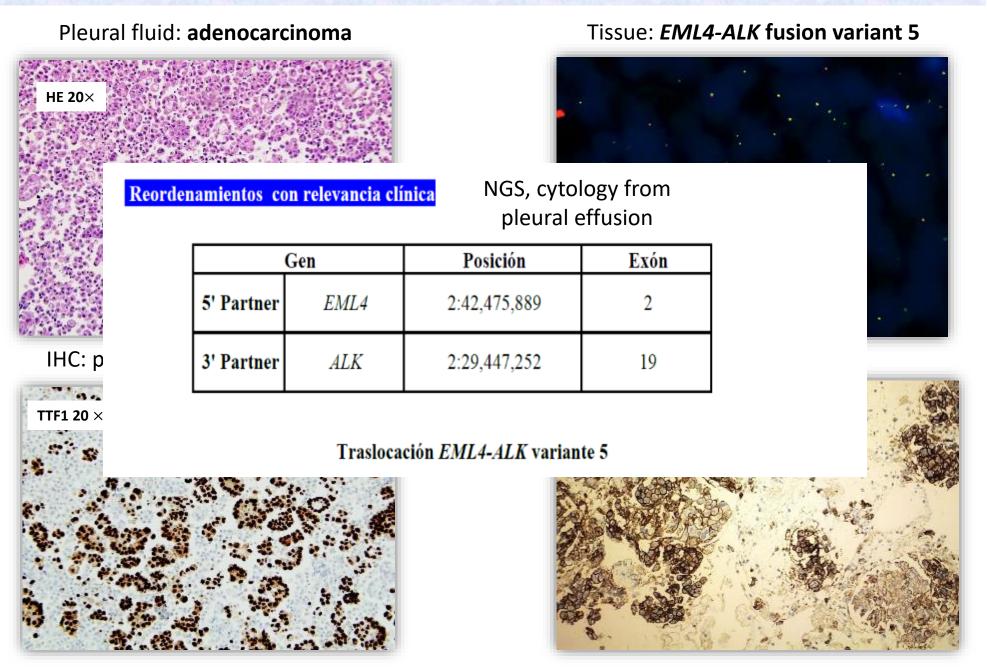
Disclosures

Consulting, advisory role or speaker: Pfizer, Boehringer, Novartis, Roche, Astra Zeneca, Sanofi, Bristol, Jansen, Pfizer, Astellas, MSD, Ipsen

Grant or travel support: MSD, Ipsen, Sanofi, Jansen, Roche



Medical Background and Initial Diagnosis


- 37-year-old woman
- Smoker of 10 cigarettes/day (IPA 5)
- Autoimmune hypothyroidism; hiatal hernia
- In July 2020 starts with dyspnea
- Admission in August 2020 for pulmonary infiltrate; COVID-19 positive
- Bronchoscopy negative for malignancy

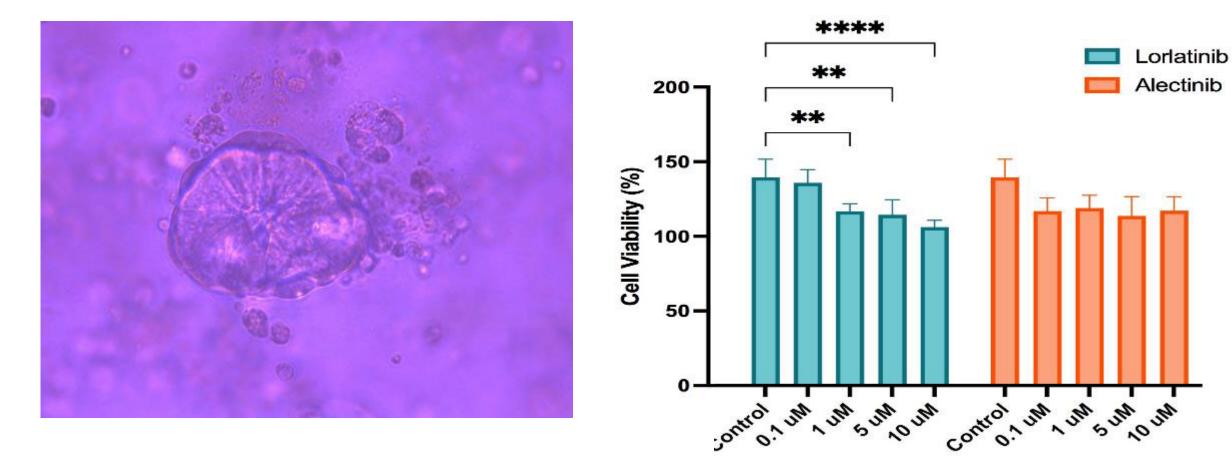
PET-CT Scan September 2020

Lesion in middle lobe and pleural effusion

In this patient with stage IV lung adenocarcinoma with *ALK* variant 5 fusion and PD-L1 60%, which treatment would you initiate?

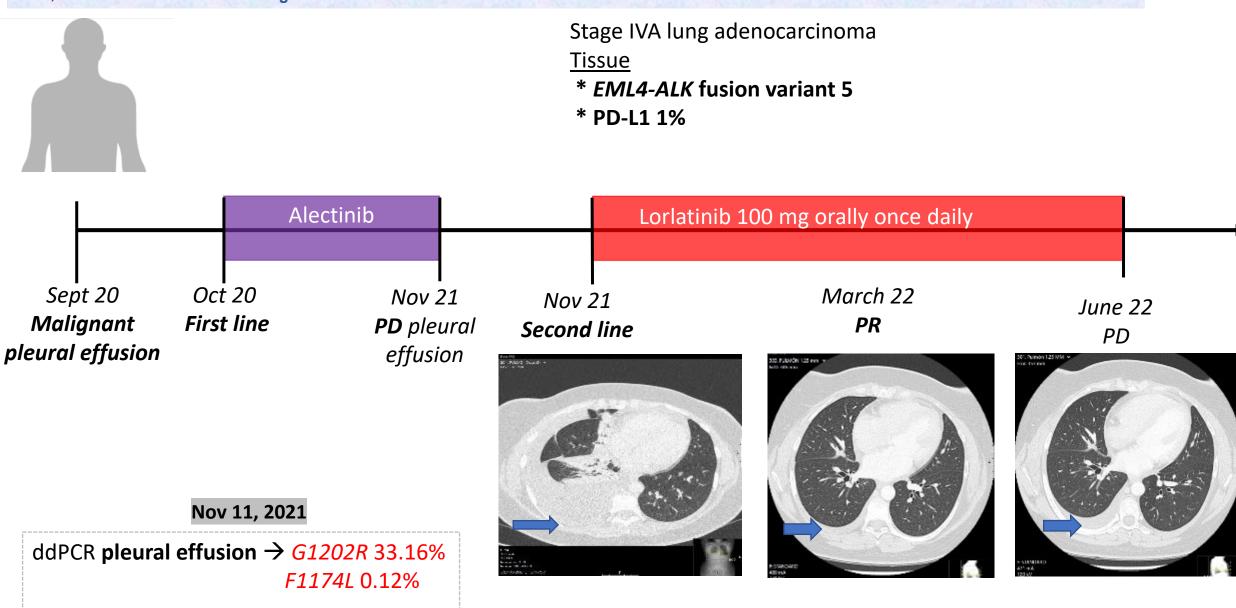
- 1. Crizotinib
- 2. Alectinib
- 3. Lorlatinib
- 4. Platinum doublet + immunotherapy

	Woman, 37 years old Smoker (IPA 5) Autoimmune hypothyro	Tissue	adenocarcinoma usion variant 5	
		Alectinib 600 mg every 1	2 hours	
l Sept 20 Malignant	 Oct 20 Starts first line	l Feb 21 PR	ו Aug 21 PD?	l Nov 21 PD pleural


pleural effusion first line

effusion

Organoids From Pleural Effusion


Courtesy of Patricia Mondelo and Miguel Abal.

	Woman, 37 Smoker (IPA Autoimmun		Stage IVA lung adenocarcinoma <u>Tissue</u> * EML4-ALK fusion variant 5 * PD-L1 1%	Э	
		ctinib	OncoKB [®] Levels of Evidence Actionable Genes Cancer Genes A	API/License About News FAQ	Q 🛆 Account 👻 👔
Sept 20 Malignant pleural effusion	AlectinibOct 20Nov 21StartsPD pleuralfirst lineeffusion	Nov 21 PD pleural effusion	ALK G12O2R Resistance Ack, a receptor tyrosine kinase, is recurrently altered by chromoso cell lung cancer and inflammatory myofibroblastic tumors. The ALK G1202R is a known resistance mutation. Non-Small Cell Lung Cancer × I ~ •	"Promising clinical da Iorlatinib in <i>ALK</i> pts wit	ata with
		Nov 11, 2021	ALK F1174L ⊠ Oncogenic ((a) • Gain-of-function ((a) • Level 1 ((a) • FDA Lev ALK, a receptor tyrosine kinase, is recurrently altered by chromosor cell lung cancer and inflammatory myofibroblastic tumors.		astic large cell lymphoma, non-small
ddPCR pleural	effusion $\rightarrow G12$ F11	202R 33.16%	The ALK F1174L mutation is known to be oncogenic.	Is lorlatinib active in <i>ALK</i> F1174L?	
ddPCR plasma	→ F11	74L 0.13%			

The study in tissue, pleura, or plasma after progression to alectinib:

- 1. Only has academic interest, not useful for decision-making
- 2. Tissue biopsy is only useful to know if there is histologic transformation
- 3. The study of secondary resistance mutations can be useful for treatment selection
- 4. Resistance in patients with *ALK* fusions is not related to activation of bypass signaling pathways

ddPCR plasma \rightarrow F1174L 0.13%

✤ G1202R in pleural effusion

40· CBT -Alectinib Lorlatinib Pemetrexed 33.16% 30-20-VAF (%) 10-11.4<mark>%</mark> 5.5% 4.67% 0.5 _T 0.23% Ð • 0.05% 0.0-300 100 200 400 0 Days since diagnoses G1269A in pleural effusion - G1269A in blood +

Monitoring LP02 by ddPCR

G1202R in blood

Conclusions

- 1. The introduction of new TKIs is improving the survival of *ALK* fusion NSCLC patients
- 2. Knowledge of the mechanisms of drug resistance can guide the choice of treatment
- 3. Tissue and liquid biopsy are complementary tools in the management of these patients

Thank you!

Tumor Board Discussion

Moderator: Solange Peters, MD All faculty

BREAK

ALK Inhibitors in NSCLC

Enriqueta Felip, MD, PhD

ALK Inhibitors in NSCLC

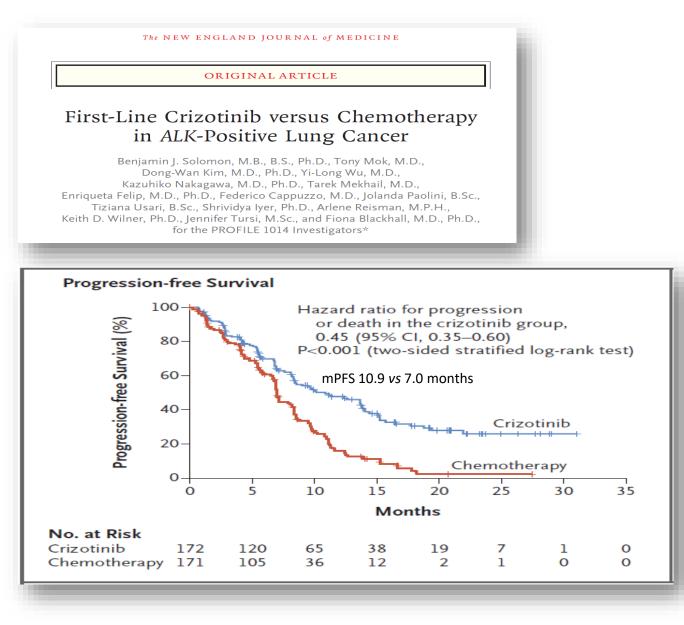
Considerations for Optimal Use in Clinical Practice in Patients With and Without Brain Metastases

Enriqueta Felip, MD, PhD Vall d'Hebron University Hospital, Barcelona, Spain

Global Lung Cancer Academy

November 14, 2022

Disclosures


- Dr Enriqueta Felip has the following relationships to disclose
 - Advisory role or speaker's bureau: Amgen, AstraZeneca, Bayer, Boehringer
 Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, Eli Lilly, F. Hoffman-La Roche,
 GlaxoSmithKline, Ipsen, Janssen, Medscape, Merck KGaA, MSD, Novartis, Peptomyc,
 PeerVoice, Pfizer, Regeneron, Sanofi, Seagen, Takeda, and Turning Point Therapeutics
 - Independent board member: Grifols
 - Research funding: Fundación Merck Salud, Grant for Oncology Innovation, and Merck Healthcare KGaA

Metastatic ALK+ NSCLC: CNS Metastases

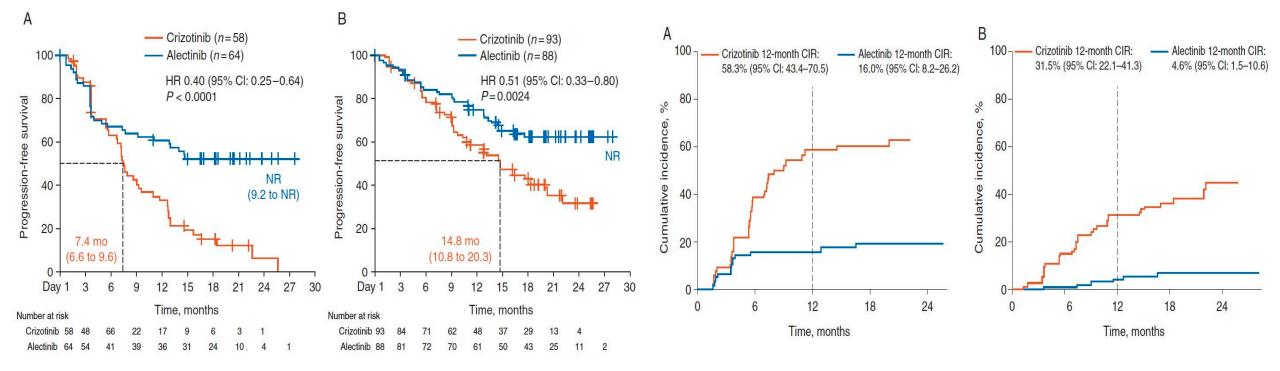
- Patients with ALK translocations have among the highest incidence of CNS metastases across the NSCLC oncogene groups
 - In newly diagnosed patients with ALK+ NSCLC, the incidence of brain metastases ranges from 20%–30%, and it is estimated that 50%–60% will develop brain metastases during the course of their disease
 - The incidence of brain metastases in ALK+ NSCLC patients increases over time and with subsequent lines of therapy
- Durable control of brain metastases in patients with brain metastases and prevention of brain metastases in those without them at the point of diagnosis remain unmet treatment needs

ALK+: Crizotinib as First Line

The Common Sites of Relapse on Crizotinib

	ALK inhibitor-naive	Post-ALK inhibitor
Brain	31-40%	58-71%
Lung	75%	34-68%
Bone	31-44%	42-58%
Liver	27-36%	37-42%

Solomon BJ, et al. N Engl J Med. 2014;371:2167-2177; Camidge DR, Doebele RC. Nat Rev Clin Oncol. 2012;9:268-277.


First-Line ALK+: PFS Outcomes From the ALEX, ALTA-1L, and CROWN Trials

	ALEX ¹		ALTA-1L ²		CROWN ³	
Efficacy Data	Alectinib	Crizotinib	Brigatinib	Crizotinib	Lorlatinib	Crizotinib
	(n = 152)	(n = 151)	(n = 137)	(n = 138)	(n = 147)	(n = 149)
Median PFS, months	34.8	10.9	24.0	11.1	Not reached	9.3
HR (95% CI)	0.43		0.48		0.27	
	(0.32–0.58)		(0.35–0.66)		(0.18–0.39)	
PFS rate at 36	46.4	13.5	43.0	19.0	63.5	18.9
months, % (95% CI)	(Cl not reported)	(Cl not reported)	(34.0–51.0)	(12.0–27.0)	(Cl not reported)	(Cl not reported)
Median duration of follow-up, months	37	7.8	40).4	36	5.7

1. Mok T, et al. Ann Oncol. 2020;31:1056-1064; 2. Tiseo M, et al. ELCC 2022. Abstract 29P; 3. Solomon B, et al. AACR 2022. Abstract CT223.

Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (*ALK*+) non-small-cell lung cancer: CNS efficacy results from the ALEX study

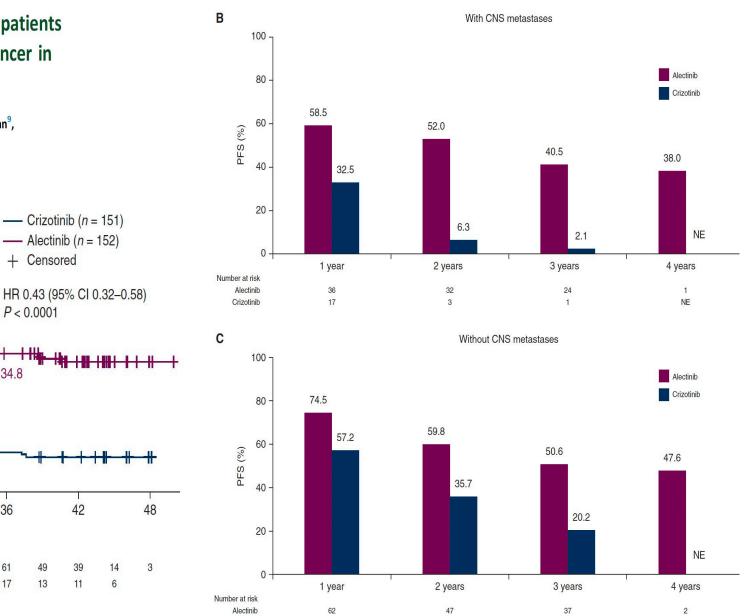
S. Gadgeel^{1*}, S. Peters², T. Mok³, A. T. Shaw⁴, D. W. Kim⁵, S. I. Ou⁶, M. Pérol⁷, A. Wrona⁸, S. Novello⁹, R. Rosell¹⁰, A. Zeaiter^{11†}, T. Liu¹¹, E. Nüesch¹¹, B. Balas¹¹ & D. R. Camidge¹²

PFS according to CNS metastatic status at baseline

- (A) Patients with CNS metastases at baseline
- (B) Patients without CNS metastases at baseline

Cumulative incidence rate of CNS PD

- (A) Patients with CNS metastases at baseline
- (B) Patients without CNS metastases at baseline


Gadgeel S, et al. Ann Oncol. 2018;29:2214-2222.

Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study

T. Mok¹, D. R. Camidge², S. M. Gadgeel³, R. Rosell⁴, R. Dziadziuszko⁵, D.-W. Kim⁶, M. Pérol⁷, S.-H. I. Ou⁸, J. S. Ahn⁹, A. T. Shaw^{10†}, W. Bordogna¹¹, V. Smoljanović¹¹, M. Hilton¹¹, T. Ruf¹¹, J. Noé¹¹ & S. Peters^{12*}

10.9

Time (months)

Crizotinib

NE

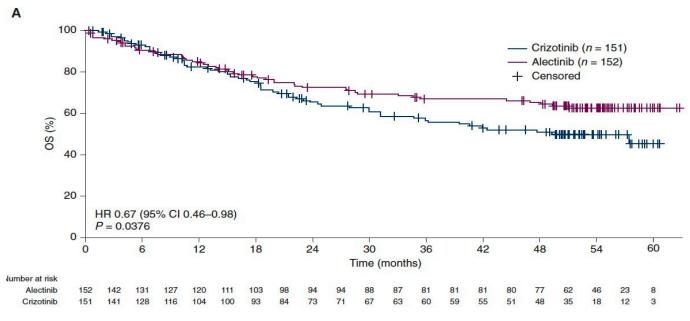
(A) Kaplan-Meier plot of investigator-assessed PFS in the intent-to-treat population, and PFS rates (B) in patients with baseline CNS metastases, and (C) in patients without baseline CNS metastases

34.8

Mok T, et al. Ann Oncol. 2020;31:1056-1064.

Α

Number at risk

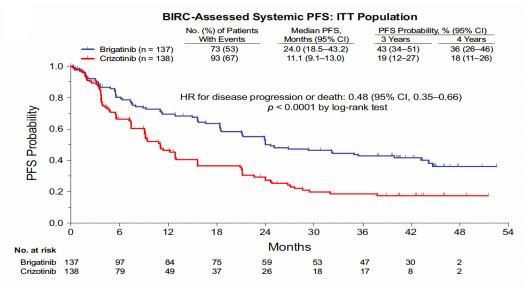

Alectinib

Crizotinib

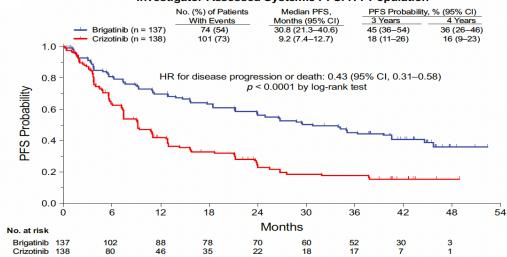
PFS (%)

Updated overall survival and final progression-free survival data for patients with treatment-naive advanced *ALK*-positive non-small-cell lung cancer in the ALEX study

T. Mok¹, D. R. Camidge², S. M. Gadgeel³, R. Rosell⁴, R. Dziadziuszko⁵, D.-W. Kim⁶, M. Pérol⁷, S.-H. I. Ou⁸, J. S. Ahn⁹, A. T. Shaw^{10†}, W. Bordogna¹¹, V. Smoljanović¹¹, M. Hilton¹¹, T. Ruf¹¹, J. Noé¹¹ & S. Peters^{12*}

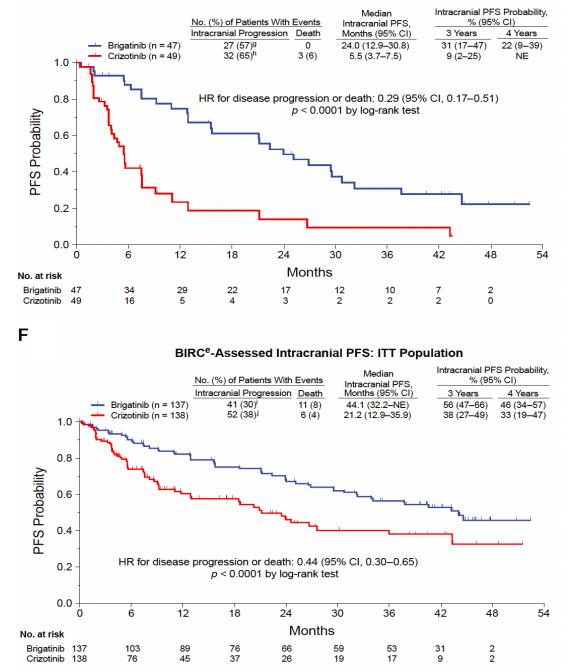


- A) Kaplan-Meier plot of investigator-assessed OS in the intent-to-treat population (stratified analysis) and
- B) OS subgroup analysis (unstratified analysis)

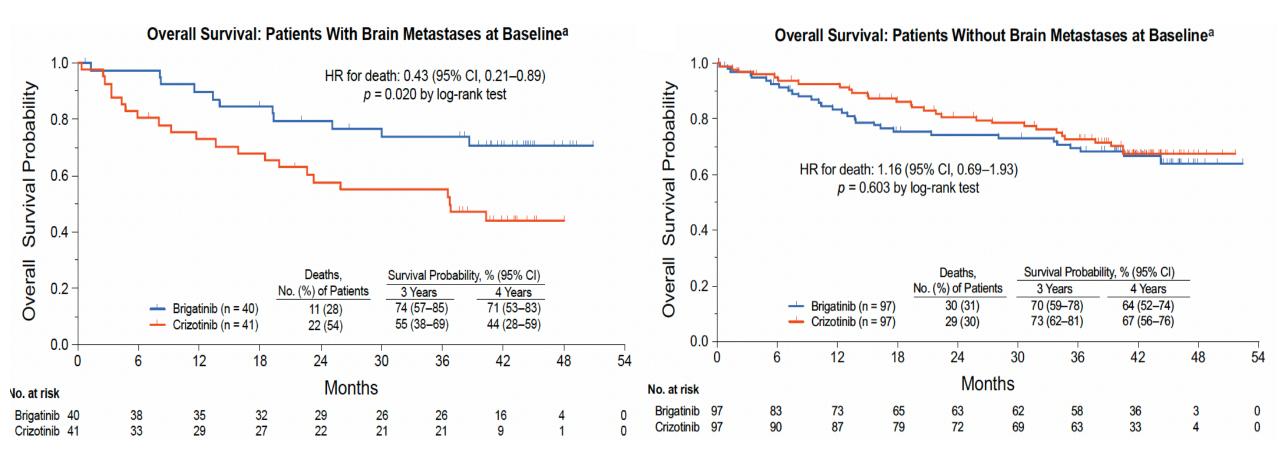

	1	E	B

		Log-rank	Hazard	ratio	Interaction test
Name	Level	P value	Hazard ratio	95% Cl	<i>P</i> value (likelihood ratio)
All	n/a	0.0609	0.70	(0.48–1.02)	
Age group (years)	< 65	0.1481	0.73	(0.48-1.12)	0.6768
	≥ 65	0.2189	0.63	(0.30-1.33)	
Sex	Female	0.3020	0.76	(0.45-1.28)	0.6923
	Male	0.1155	0.66	(0.39–1.11)	
Race	Asian	0.3298	0.74	(0.40-1.36)	0.8575
	Non-Asian	0.1161	0.69	(0.43–1.10)	
Smoking status $n = 17$	Active smoker	0.4126	1.97	(0.38-10.20)	0.5471
	Non-smoker	0.1181	0.68	(0.42-1.11)	
	Past smoker	0.1339	0.62	(0.33–1.17)	
ECOG PS	0	0.1266	0.52	(0.22-1.22)	0.4636
	1	0.0960	0.68	(0.44-1.07)	
<i>n</i> = 20	2	0.6440	1.30	(0.43–3.90)	
CNS mets at baseline (IRC)	Yes	0.0477	0.58	(0.34-1.00)	0.4677
	No	0.2851	0.76	(0.45–1.26)	
Prior brain radiation	Yes	0.0889	0.39	(0.13-1.19)	0.2064
	No	0.1956	0.77	(0.52-1.14)	

Brigatinib Versus Crizotinib in ALK Inhibitor-Naive Advanced ALK-Positive NSCLC: Final Results of Phase 3 ALTA-1L Trial

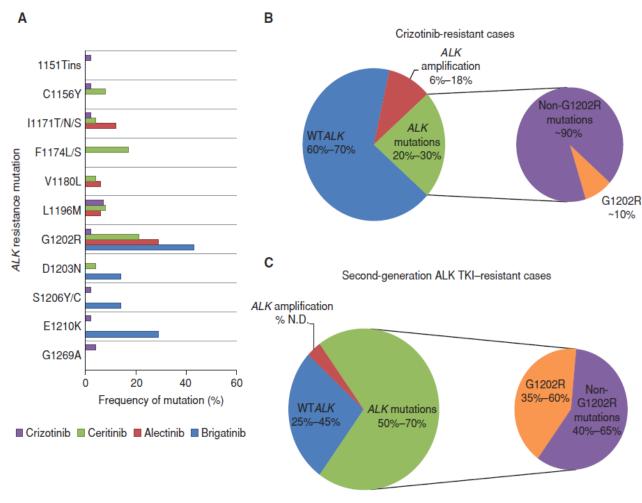


Investigator-Assessed Systemic PFS: ITT Population



Camidge DR, et al. J Thorac Oncol. 2021;16:2091-2108.

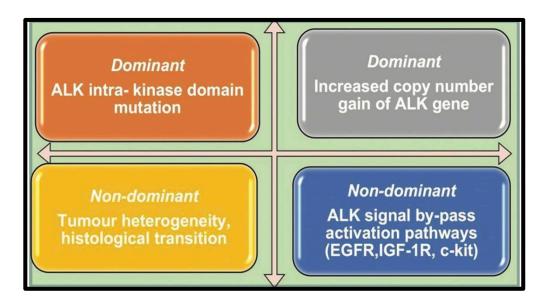
BIRC^e-Assessed Intracranial PFS: Patients With Brain Metastases at Baseline[†]


Brigatinib Versus Crizotinib in ALK Inhibitor-Naive Advanced ALK-Positive NSCLC: Final Results of Phase 3 ALTA-1L Trial

Acquired Resistance Mechanisms¹

ALK dependent

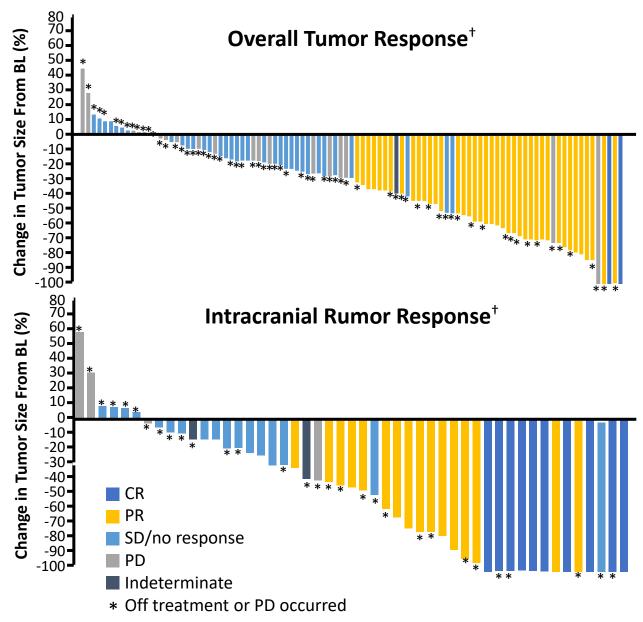
- *ALK* secondary resistance mutations
- ALK amplification



1. Gainor JF, et al. *Cancer Discov*. 2016;6:1118-1133; 2. Dardaei L, et al. *Nat Med*. 2018;24:512-517; 3. Gouji T, et al. *J Thorac Oncol*. 2014;9:e27-e28.

ALK independent

- Bypass tracks
- Lineage changes


ALK TKI	Bypass Pathway	Reference
	EGFR activation	Katayama et al 2012
Crizotinih	cKIT amplification	Katayama et al 2012
Crizotinib	IGF-1R signaling	Lovely et al 2014
	SRC signaling	Crystal et al 2014
Crinotinih (poritinih)	MAPK pathway	Doebele et al 2012
Crizotinib/ceritinib ²	RAS pathway	Dardaei et al 2018
Alectinib ³	MET amplification	Gouji et al 2014

Phase II Lorlatinib: Efficacy in Patients With ≥2 Prior ALK TKIs (± CT)

- Pooled data from EXP4 (2 ALK TKIs ± CT), EXP5 (3 ALK TKIs ± CT): 111 patients
 - 83 patients (75%) had brain metastases at baseline

Outcome	N = 111
ORR, n (%) Intracranial ORR, n/N (%)	43 (39) 26/49 (53)
Median DOR, mo (95% CI)	NR (5.5–NR)
Median PFS, mo (95% CI)	6.9 (5.4–9.5)

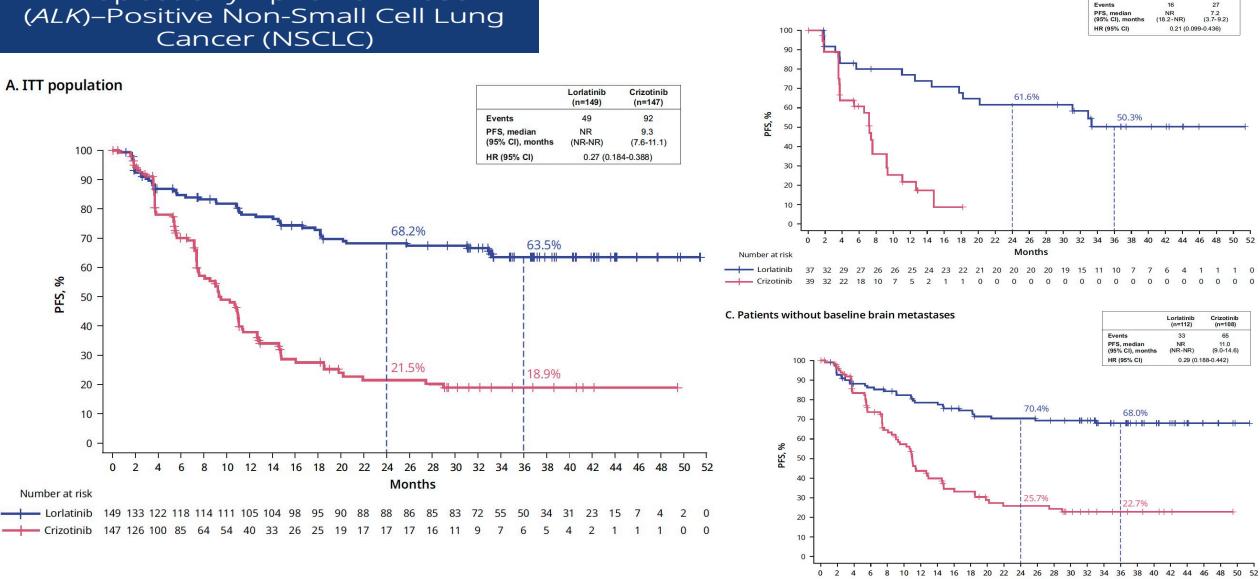
⁺Patients with ≥1 on-study target lesion assessment as per ICR were included in overall and intracranial tumor response analysis.

Solomon BJ, et al. Lancet Oncol. 2018;19:1654-1667.

Intracranial and extracranial efficacy of lorlatinib in patients with *ALK*-positive non-small-cell lung cancer previously treated with second-generation ALK TKIs

E. Felip^{1*}, A. T. Shaw², A. Bearz³, D. R. Camidge⁴, B. J. Solomon⁵, J. R. Bauman⁶, T. M. Bauer⁷, S. Peters⁸, F. Toffalorio⁹, A. Abbattista⁹, H. Thurm¹⁰, G. Peltz¹¹, R. Wiltshire¹² & B. Besse^{13,14}

We report updated efficacy data as of cutoff date May 14, 2019.


	≥1 prior second-generation ALK TKI (EXP3B-5)	1 prior second-generation ALK TKI (EXP3B)	≥2 prior ALK TKIs (EXP4-5
Intracranial with \geq 1 measurable CNS less	sion		
Ν	57	9	48
IC-ORR, n (%)	32 (56.1)	6 (66.7)	26 (54.2)
95% CI	42.4-69.3	29.9-92.5	39.2-68.6
Best overall response, n (%)			
Complete response	12 (21.1)	2 (22.2)	10 (20.8)
Partial response	20 (35.1)	4 (44.4)	16 (33.3)
Stable disease/no response	16 (28.1)	0	16 (33.3)
Progressive disease	6 (10.5)	2 (22.2)	4 (8.3)
Indeterminate	3 (5.3)	1 (11.1)	2 (4.2)
Duration of IC objective response, ^a me	onths		
Median	12.4	20.7	12.4
95% CI	6.0-37.1	4.1-37.1	6.0-16.7
Extracranial			
Ν	139	28	111
EC-ORR <i>, n</i> (%)	51 (36.7)	9 (32.1)	42 (37.8)
95% CI	28.7-45.3	15.9-52.4	28.8-47.5
Best overall response, n (%)			
Complete response	5 (3.6)	1 (3.6)	4 (3.6)
Partial response	46 (33.1)	8 (28.6)	38 (34.2)
Stable disease/no response	55 (39.6)	13 (46.4)	42 (37.8)
Progressive disease	21 (15.1)	4 (14.3)	17 (15.3)
Indeterminate	12 (8.6)	2 (7.1)	10 (9.0)
Duration of EC objective response, ^a m	onths		
Median	9.7	NE	7.1
95% CI	6.1-33.3	6.8-NE	5.6-32.2

Felip E, et al. Ann Oncol. 2021;32:620-630.

Updated Efficacy and Safety From the Phase 3 CROWN Study of First-Line Lorlatinib vs Crizotinib in Advanced Anaplastic Lymphoma Kinase (ALK)-Positive Non-Small Cell Lung Cancer (NSCLC)

B. Patients with baseline brain metastases

Number at risk

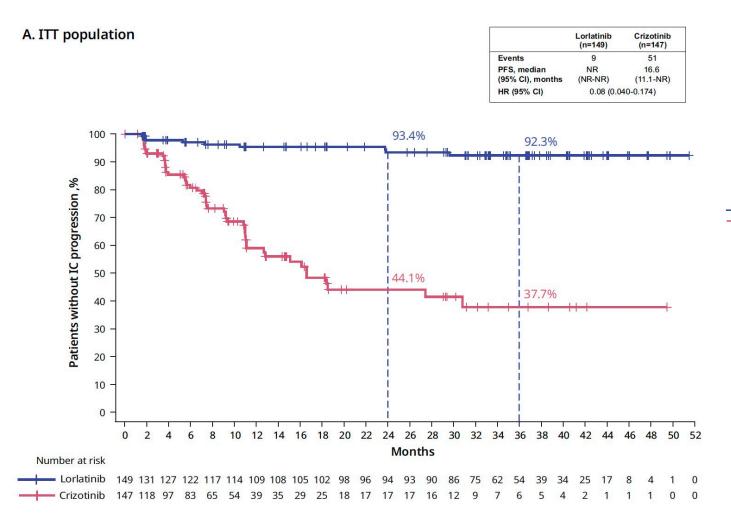
Solomon B, et al. AACR 2022. Abstract CT223.

%

PFS,

Crizotinib 108 94 78 67 54 47 35 31 25 24 19 17 17 17 16 11 9 7 6 5 4 2 1

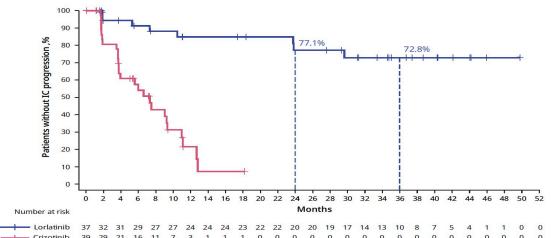
Months

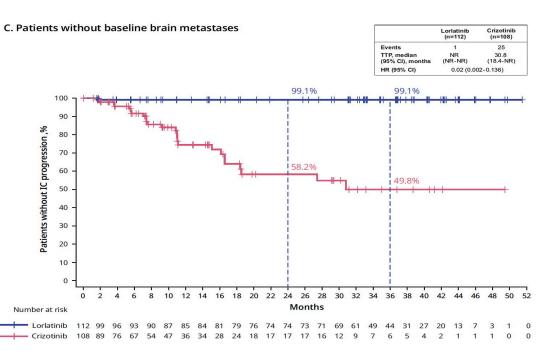

orlatini

(n=37)

Crizotinit

(n=39)


Updated Efficacy and Safety From the Phase 3 CROWN Study of First-Line Lorlatinib vs Crizotinib in Advanced Anaplastic Lymphoma Kinase (*ALK*)–Positive Non-Small Cell Lung Cancer (NSCLC)



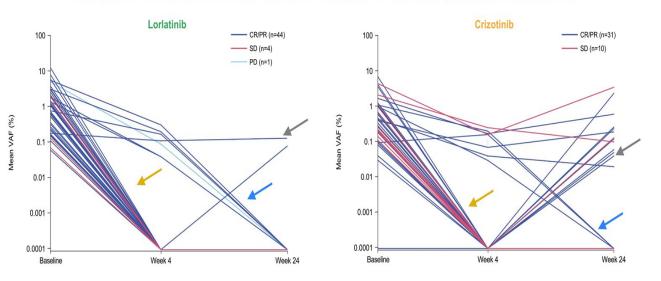
Time to IC progression by BICR

B. Patients with baseline brain metastases

	Lorlatinib (n=37)	Crizotinit (n=39)
Events	8	26
TTP, median (95% CI), months	NR (NR-NR)	7.3 (3.7-9.3)
HR (95% CI)	0.10 (0.03	37-0.268)

Solomon B, et al. AACR 2022. Abstract CT223.

First-Line Treatments for *ALK*+ NSCLC: Most Commonly Reported AEs of Any Grade Occurring in ≥20% of Patients, %


CROWN	ALEX	ALTA-1L
Lorlatinib	Alectinib	Brigatinib
(n = 149) ¹	(n = 152) ²	(n = 136) ³
Hypercholesterolemia (70) Hypertriglyceridemia (64) Edema (55) Increased weight (38) Peripheral neuropathy (34) Cognitive effects (21) Diarrhea (21)	Constipation (37) Anemia (26) Fatigue (22) Blood bilirubin increased (22)	Diarrhea (58) Increased blood CPK (50) Cough (36) Nausea (33) Hypertension (32) Increased AST (26) Back pain (26) Dyspnea (24) Headache (24) Increased lipase (24) Increased lipase (24) Increased ALT (23) Vomiting (22) Fatigue (21) Pruritus (21) Constipation (20) Arthralgia (20)

1. Shaw AT, et al. N Engl J Med. 2020;383:2018-2029; 2. Mok T, et al. Ann Oncol. 2020;31:1056-1064; 3. Camidge DR, et al. J Thorac Oncol. 2021;16:2091-2108.

Early Circulating Tumor (ct) DNA Dynamics and Efficacy of Lorlatinib: Analysis From the CROWN Study

Changes in Mean VAF at Week 4/Week 24 Compared With BL by BOR Based on BICR

- Most patients had early decrease in ALK VAF, but it was less sustained in crizotinib-treated patients
- Presumably clonal resistance mechanism covered by lorlatinib?

Resistance mechanisms to lorlatinib or crizotinib in treatment-naive patients with *ALK*+ advanced non-small cell lung cancer

Table 3: Summary of potential resistance mechanisms against lorlatinib or crizotinib

Resistance mutation at EOT	Lorlatinib n=26	Crizotinib n=80
New single ALK mutation, n (%)	0	6 (8)
ALK compound mutation, n (%)	0	2 (2)
Bypass mechanism, n (%)ª	9 (35)	10 (12)
MAPK pathway aberration	3 (12)	1 (1)
PI3K/mTOR/PTEN pathway aberration	2 (8)	0
RTK pathway aberration	4 (15)	5 (6)
Cell cycle pathway aberration	2 (8)	5 (6)
Other mutation, n (%)	9 (35)	15 (19)
^a Each sample could harbor >1 bypass mechanism.		

Thanks!!! efelip@vhio.net

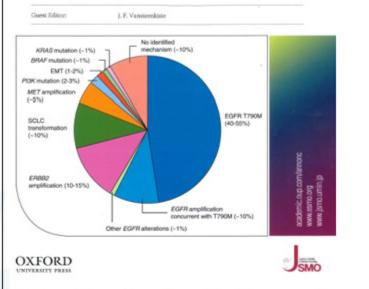
EGFR Inhibitors in NSCLC

Johan Vansteenkiste, MD, PhD

Disclosures [update 09/2022, alphabetical]

- Research funding at University Hospitals KU Leuven
 - MSD
- Advisory functions
 - AstraZeneca, BMS, Daiichi-Sankyo, Janssen, Merck, MSD, Novartis, PDCline, Pfizer, Roche, Sanofi
- Lectures
 - AstraZeneca, BMS, Janssen, Novartis, Roche, Sanofi
- Others
 - None

Respiratory Oncology Unit Univ. Hospital Leuven Leuven Lung Cancer Group http://www.LLCG.be



ESMO === EISN 0823-7534 (pere ume 29 Supplement 1 2018

Editorial

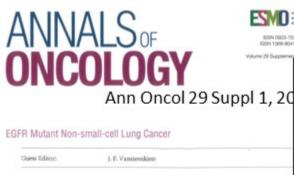
Ann Oncol 29 Suppl 1: i1-i2, 2018

EGFR Mutant Non-small-cell Lung Cancer

Tyrosine kinase inhibition of EGFR: a successful history of targeted therapy for NSCLC since 20 years

The first-in-human dosing of the Epidermal Growth Factor Receptor tyrosine kinase inhibitor (EGFR-TKI) ZD1839 (later gefitinib) goes back to April 1998, by now almost 20 years ago. In

several randomized controlled trials have established the role of first-generation EGFR-TKIs as preferred first-line therapy for EGFR mutant tumours. Gefitinib and erlotinib gained global approval in this setting, while icotinib is approved in China. The second-generation drugs are different because of their irreversible binding to EGFR, and because of their broader inhibition of the different members of the human epidermal receptor (HER) fam-



SPECIAL ARTICLE

ESMO expert consensus statements on the management of EGFR mutant non-small-cell lung cancer

A. Passaro^{1*}, N. Leighl^{2†}, F. Blackhall^{3,4†}, S. Popat^{5,6,7†}, K. Kerr^{8†}, M. J. Ahn⁹, M. E. Arcila¹⁰, O. Arrieta¹¹, D. Planchard¹², F. de Marinis¹, A. M. Dingemans¹³, R. Dziadziuszko¹⁴, C. Faivre-Finn¹⁵, J. Feldman¹⁶, E. Felip¹⁷, G. Curigliano¹⁸, R. Herbst¹⁹, P. A. Jänne²⁰, T. John²¹, T. Mitsudomi²², T. Mok²³, N. Normanno²⁴, L. Paz-Ares²⁵, S. Ramalingam²⁶, L. Sequist²⁷, J. Vansteenkiste²⁸, I. I. Wistuba²⁹, J. Wolf³⁰, Y. L. Wu³¹, S. R. Yang⁷, J. C. H. Yang³², Y. Yatabe³³, G. Pentheroudakis³⁴ & S. Peters³⁵ Ann Oncol 33:466-487, 2022

No identified mechanism (~10%) KRAS mutation (~1%) BRAF mutation (-1%) EMT (1-2%) PI3K mutation (2-3%) MET amplification (-5%) EGFR T790M SCLC (40-55%) transformation (-10%) ERBB2 amplification (10-15%) EGFR amplification concurrent with T790M (~10%) Other EGFR alterations (-1%) OXFORD

Editorial

Case study

ESMO

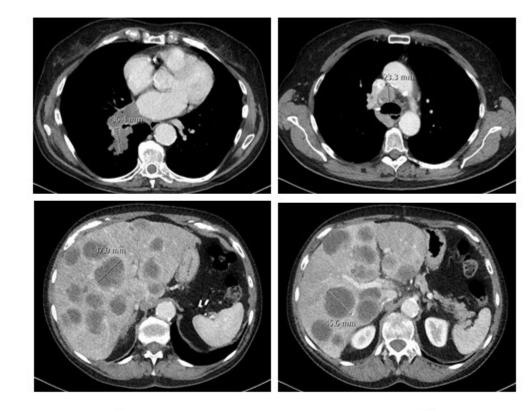
EEN 0823-7534 (print) (SSN 1569-8041 (print)

٠

- **Optimal 1st line therapy** ٠
 - Osimertinib _
 - Sequencing? _
 - Other 3rd generation TKIs _
- Failure post-osimertinib ٠
 - Extra pathway -
 - Intra pathway -
 - Histologic transformation _
 - No specific findings _
- Uncommon EGFR mutations ٠
- Conclusion •

Ann Oncol 29 Suppl 1: i1-i2, 2018

ed controlled trials have established the role of EGFR-TKIs as preferred first-line therapy for mours. Gefitinib and erlotinib gained global aptting, while icotinib is approved in China. The n drugs are different because of their irreversible and because of their broader inhibition of the rs of the human epidermal receptor (HER) fam-



nanagement of EGFR mutant

M. E. Arcila¹⁰, O. Arrieta¹¹, D. Planchard¹², F. de Marinis¹, A. M. Dingemans¹³, R. Dziadziuszko¹⁴, C. Faivre-Finn¹⁵, J. Feldman¹⁶, E. Felip¹⁷, G. Curigliano¹⁸, R. Herbst¹⁹, P. A. Jänne²⁰, T. John²¹, T. Mitsudomi²², T. Mok²³, N. Normanno²⁴, L. Paz-Ares²⁵, S. Ramalingam²⁶, L. Sequist²⁷, J. Vansteenkiste²⁸, I. I. Wistuba²⁹, J. Wolf³⁰, Y. L. Wu³¹, S. R. Yang⁷, J. C. H. Yang³², Y. Yatabe³³, G. Pentheroudakis³⁴ & S. Peters³⁵ Ann Oncol 33:466-487, 2022

Case study: 69 year old female

- Current smoker (35 packyears) housewife
- Medical history
 - 2000: epilepsy/headache -> diagnosis of right frontal brain lesion: low-grade glioma. Conservative approach, anti-epileptic agents
 - 2004: coronary disease stent placement
- 01/2019: rapid deterioration of general condition
 - Fatigue, weight loss 77 -> 68 kg, WHO PS 2, cough since 4 months
 - Lab: CRP 82 mg/L, abnormal AST/ALT, CEA 85, normal renal function
 - Brain MRI: glioma, otherwise normal
- Bronchoscopy-EBUS
 - Endobronchial normal EBUS: multiple TBNA samples
 - Pathology:
 - NSCLC favor adeno
 - IHC: PD-L1 60%, ALK/ROS1/NTRK negative. NGS pending

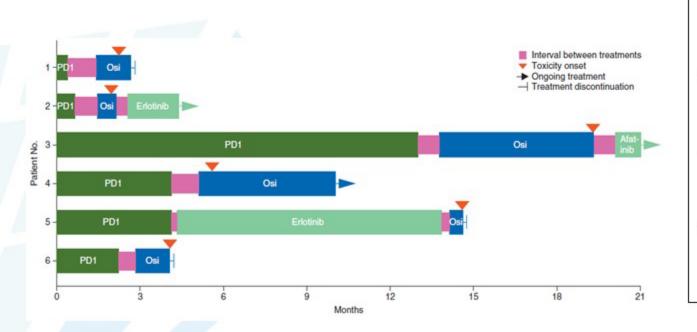
Stage IVb: T2a N2 M1c ➤ RECIST v1.1: 148 mm

Case study: 69 year old female > polling question

- Which of the following options do you prefer?
 - 1. Wait for NGS
 - 2. Start carboplatin-pemetrexed & pembrolizumab
 - 3. Start carboplatin-paclitaxel-bevacizumab & atezolizumab
 - 4. Start carboplatin-pemetrexed

Case study: 69 year old female > continued

- Carboplatin-pemetrexed cycle 1
- Day 15 of cycle 1:
 - Slight symptomatic improvement
 - NGS: EGFR exon 19 deletion mutation !
- 03/2019: start Osimertinib -> PR with RECIST v1.1 from 148 to 28 mm (liver normal, intrathoracic dimensions)

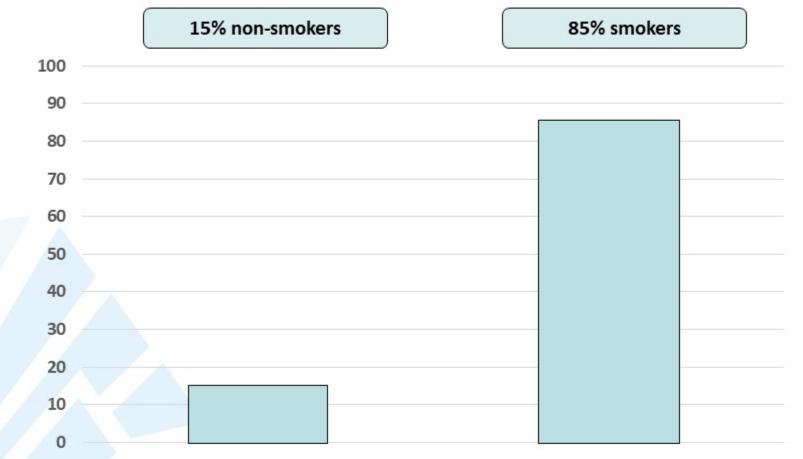


Case study: 69 year old female > immunotherapy in EGFRmut+ patients

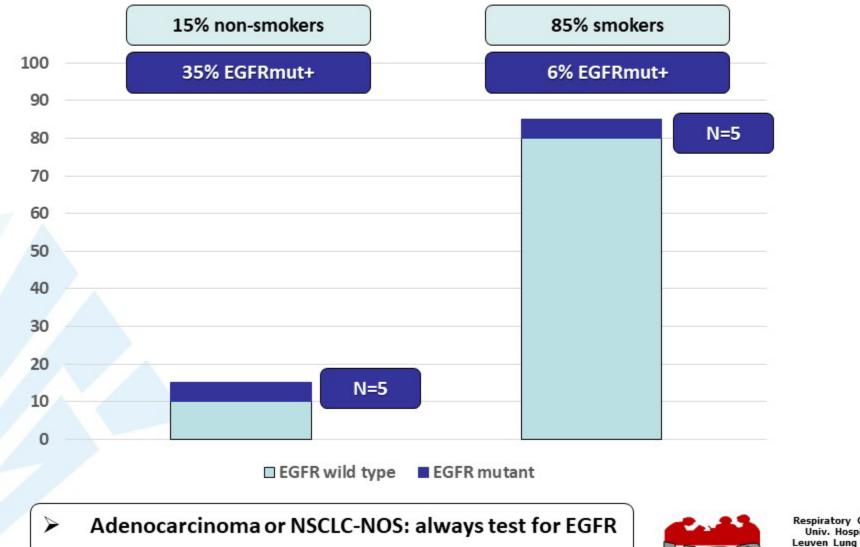
CRIGINAL ARTICLE

Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib

A. J. Schoenfeld¹, K. C. Arbour¹, H. Rizvi¹, A. N. Iqbal¹, S. M. Gadgeel², J. Girshman³, M. G. Kris¹, G. J. Rieły¹, H. A. Yu^{1*†} & M. D. Hellmann^{1*†}


- Patients with EGFR-mutant NSCLC who were treated with PD-(L)1 blockade and EGFR-TKIs, irrespective of drug or sequence of administration (total n=126)
- 15% (6/41) of patients with sequential PD-(L)1 blockade followed by osimertinib developed a severe irAE
- Severe irAEs were most common among those who began osimertinib <3 months of prior PD-(L)1 blockade (5/21 or 24%)
- No severe irAEs were identified among patients treated with osimertinib followed by PD-(L)1
- IrAEs occurred at a median onset of 20 days after osimertinib
- All patients with irAEs required steroids and most required hospitalization

Schoenfeld et al, Ann Oncol 30:839-844, 2019


NSCLC > EGFR – smoking paradox

NSCLC > EGFR – smoking paradox

- Case study
- Optimal 1st line therapy
 - Osimertinib
 - Sequencing?
 - Other 3rd generation TKIs
- Failure post-osimertinib
 - CNS failure
 - Histologic transformation
 - Known molecular mechanism
 - No specific findings
- Uncommon EGFR mutations
- Conclusion

NSCLC EGFRmut+ > FLAURA ph3 trial

FLAURA study

- Advanced <u>NSCLC</u>, untreated
- EGFRmut+ (del19, L858R)
- PS 0-1
- Stable brain mets allowed

1° endpoint: PFS (investigator)

Osimertinib 80 mg/d (N=279)

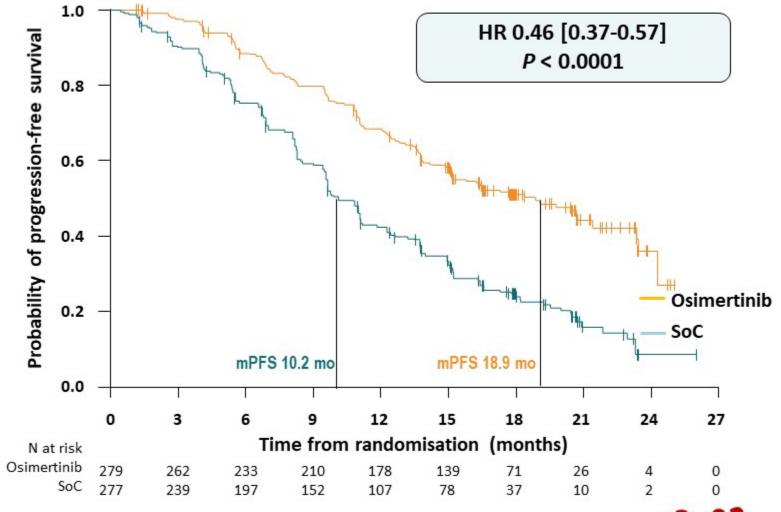
Standard EGFR-TKI* (N=277) *Gefitinib or Erlotinib

The NEW ENGLAND JOURNAL of MEDICINE

This article was published on November 18, 2017, at NEJM.org.

Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer

J.-C. Soria, Y. Ohe, J. Vansteenkiste, T. Reungwetwattana, B. Chewaskulyong, K.H. Lee, A. Dechaphunkul, F. Imamura, N. Nogami, T. Kurata, I. Okamoto, C. Zhou, B.C. Cho, Y. Cheng, E.K. Cho, P.J. Voon, D. Planchard, W.-C. Su, J.E. Gray, S.-M. Lee, R. Hodge, M. Marotti, Y. Rukazenkov, and S.S. Ramalingam, for the FLAURA Investigators*

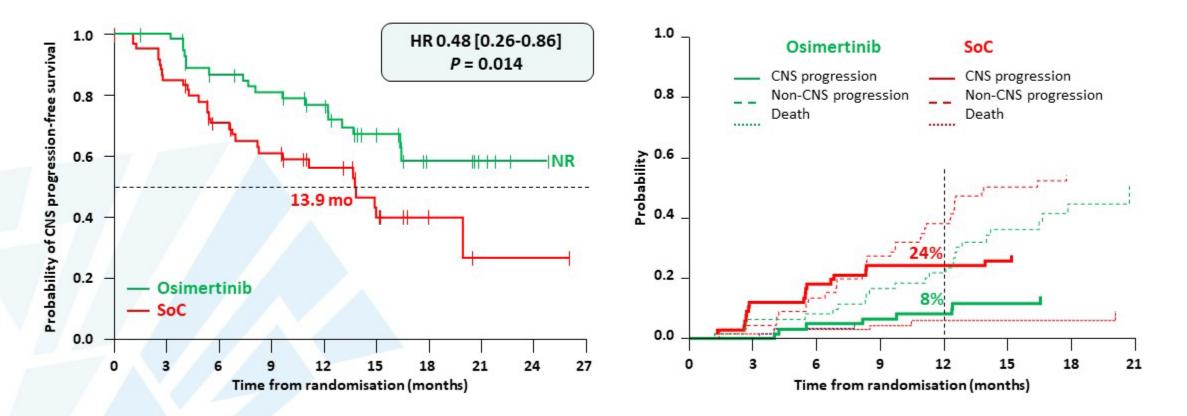

The NEW ENGLAND JOURNAL of MEDICINE

This article was published on November 21, 2019, at NEJM.org.

Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC

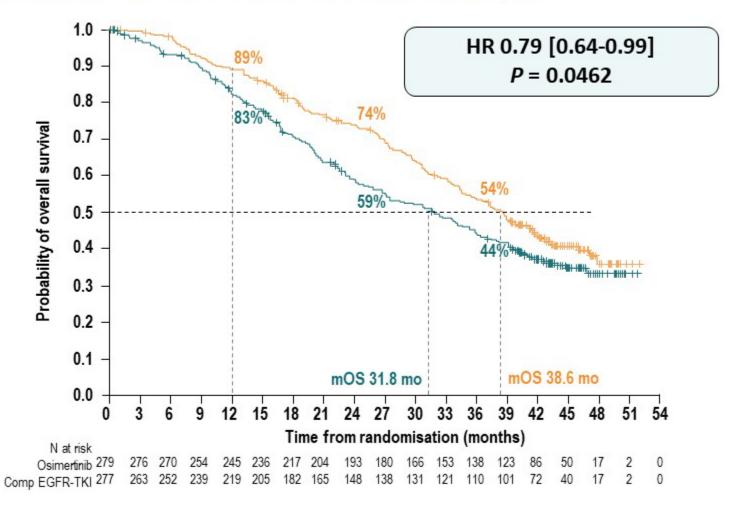
S.S. Ramalingam, J. Vansteenkiste, D. Planchard, B.C. Cho, J.E. Gray, Y. Ohe, C. Zhou, T. Reungwetwattana, Y. Cheng, B. Chewaskulyong, R. Shah, M. Cobo, K.H. Lee, P. Cheema, M. Tiseo, T. John, M.-C. Lin, F. Imamura, T. Kurata, A. Todd, R. Hodge, M. Saggese, Y. Rukazenkov, and J.-C. Soria, for the FLAURA Investigators*

NSCLC EGFRmut+ > ph3 osimertinib vs. SoC-TKI: PFS (by investigator)



Ramalingam et al, ESMO 2017 and Soria et al, N Engl J Med 378:113-125, 2018

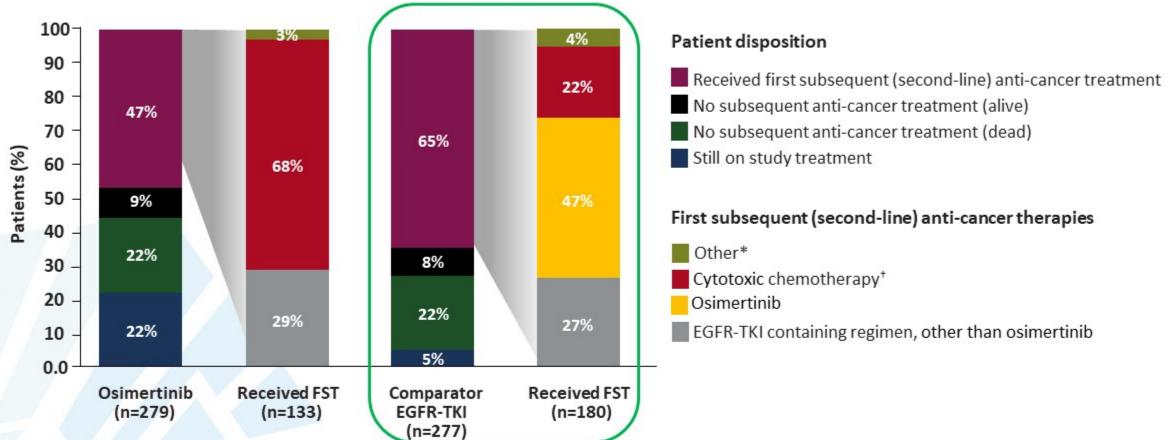
NSCLC EGFRmut+ > ph3 osimertinib CNS analysis: CNS-PFS and competing risks



Vansteenkiste et al, ESMO-ASIA 2017 and Reungwetwattana et al, J Clin Oncol 36:3290-3297, 2018

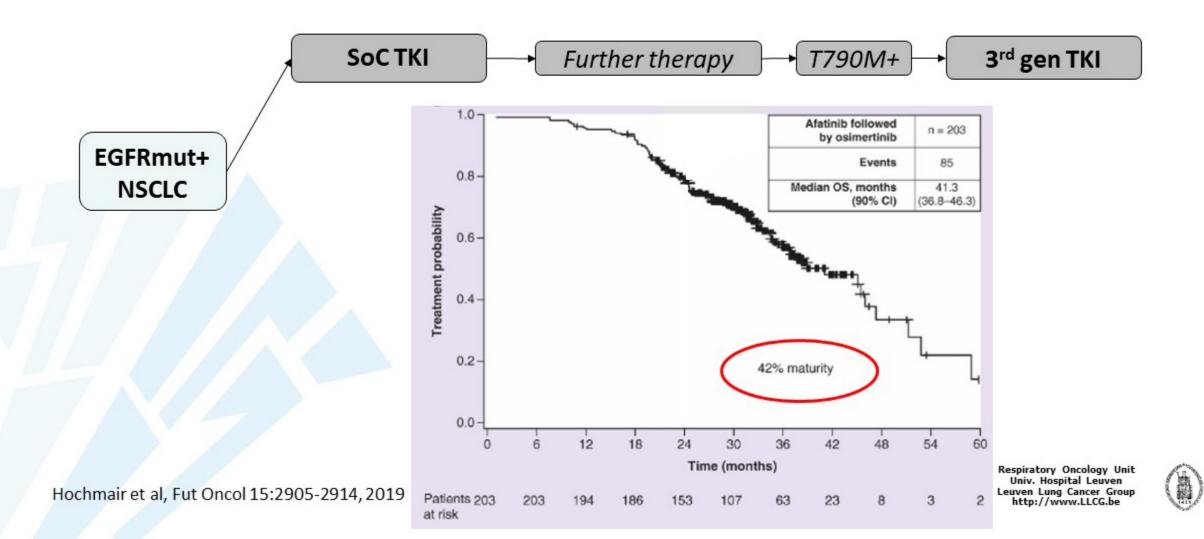
Respiratory Oncology Unit Univ. Hospital Leuven Leuven Lung Cancer Group http://www.LLCG.be

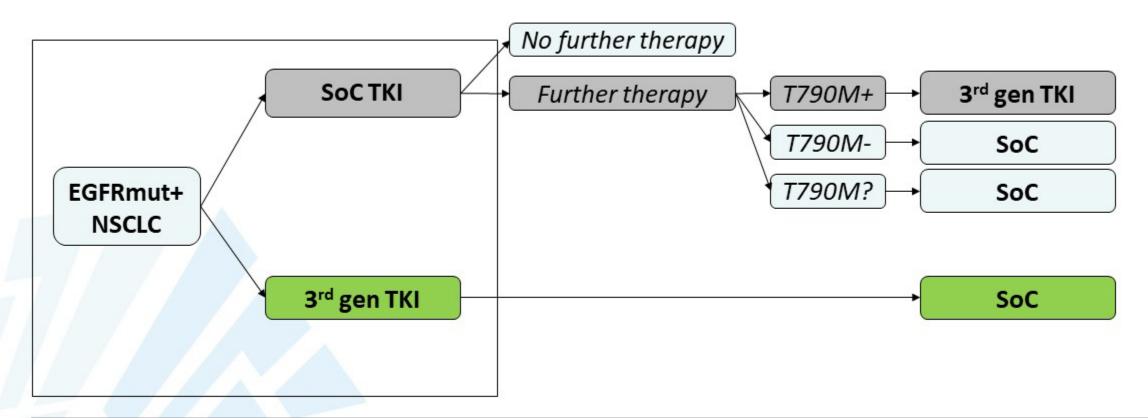
> ph3 osimertinib vs. SoC-TKI: OS final analysis*


* 321 deaths in 556 patients at data cut-off: 58% maturity

Ramalingam et al, ESMO 2019 and N Engl J Med 382:41-50, 2020

> ph3 osimertinib: further therapies

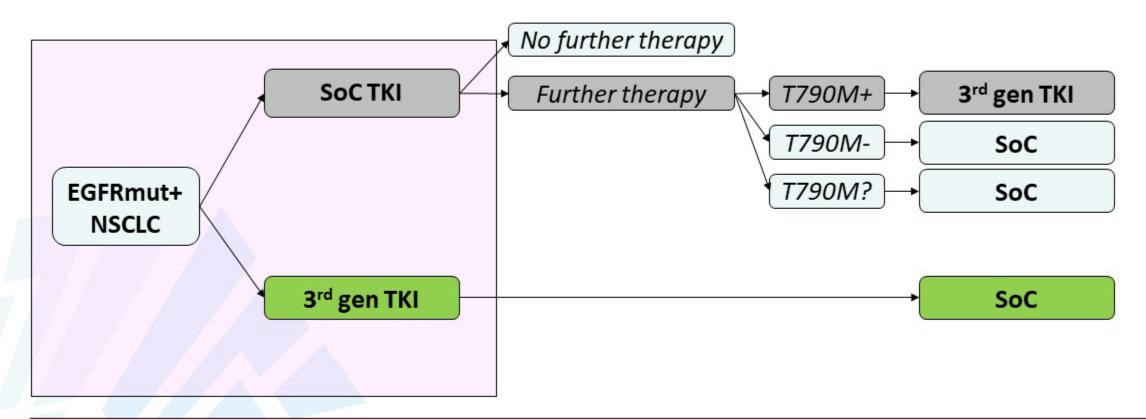

- > 180/277 of patients in the comparator EGFR-TKI arm received a subsequent treatment (65%)
- 85/277 of these patients received osimertinib (31%)



> sequencing? Ph2 GIOTAG study

retrospective real-world study of sequential therapy with Afatinib followed by Osimertinib

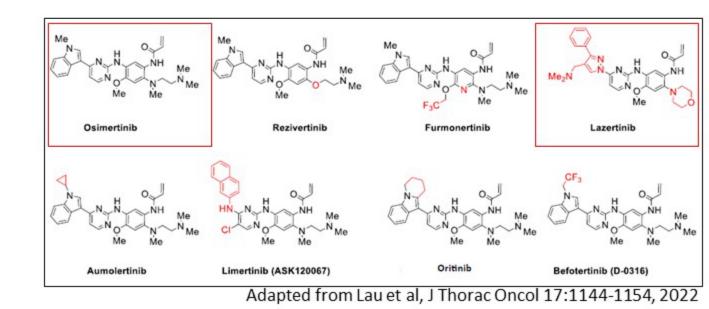
NSCLC EGFRmut+ > sequencing? Loss of best drug paradigm



FLAURA: superior PFS, superior PFS2, superior OS, and superior CNS control with novel strategy

NSCLC EGFRmut+ > sequencing? Loss of best drug paradigm

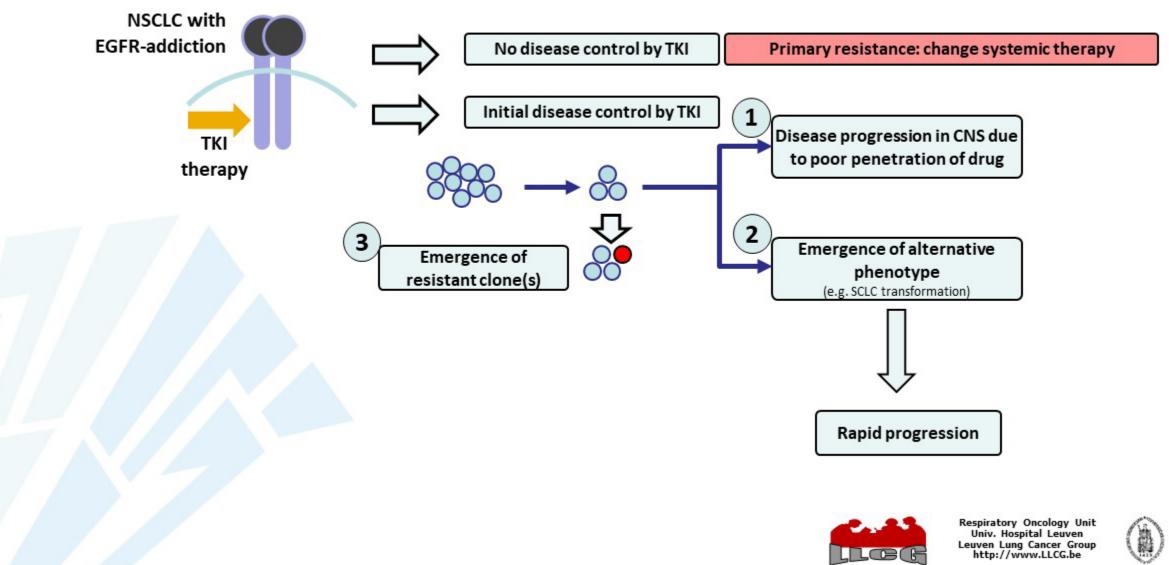
FLAURA: superior PFS, superior PFS2, superior OS, and superior CNS control with novel strategy



NSCLC EGFRmut+ > other 3rd generation TKIs

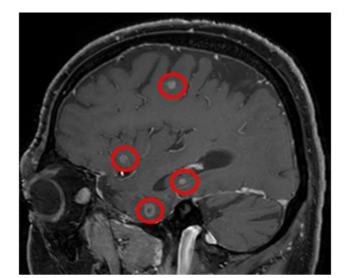
- Lazertinib
 - Approval in South-Korea for T790M+
 - International ph3 trial in 1stline
 - Co-development with JNJ in Amivantamab program
- Chinese me-too compounds
 - No novelty
 - Trials in Chinese population only
 - May not meet FDA or EMA criteria
 - Results available for 2 trials [AENEAS¹, FURLONG²]
 - Others expected 2023

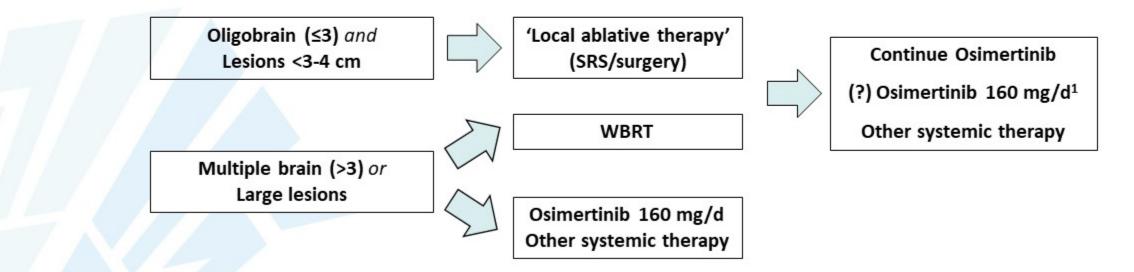
1 Lu et al, J Clin Oncol 40: 3162-3171, 2022 2 Shi et al, Lancet Respir Med online June 2, 2022



- Case study
- Optimal 1st line therapy
 - Osimertinib
 - Sequencing?
 - Other 3rd generation TKIs
- Failure post-osimertinib
 - CNS failure
 - Histologic transformation
 - Known molecular mechanism
 - No specific findings
- Uncommon EGFR mutations
- Conclusion

NSCLC EGFRmut+ > patterns of resistance to 1L Osimertinib

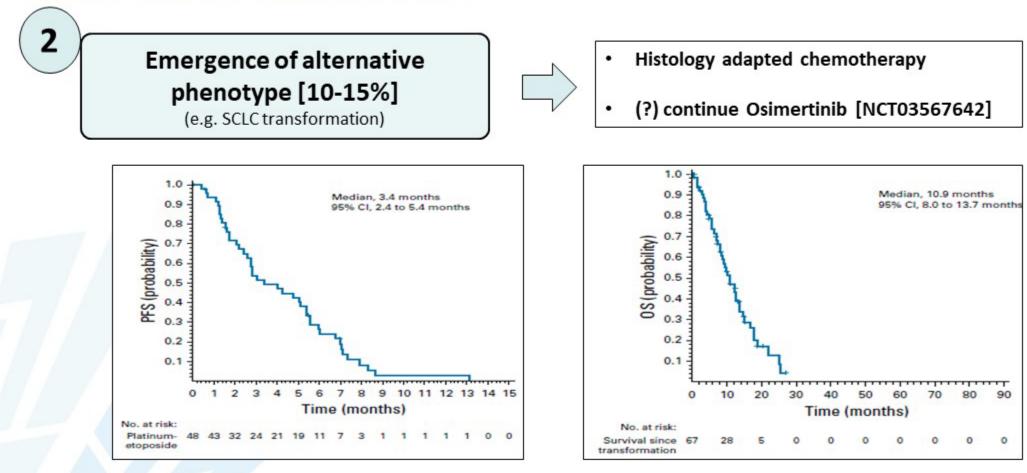

1 Yang et al, J Clin Oncol 38:538-547, 2020

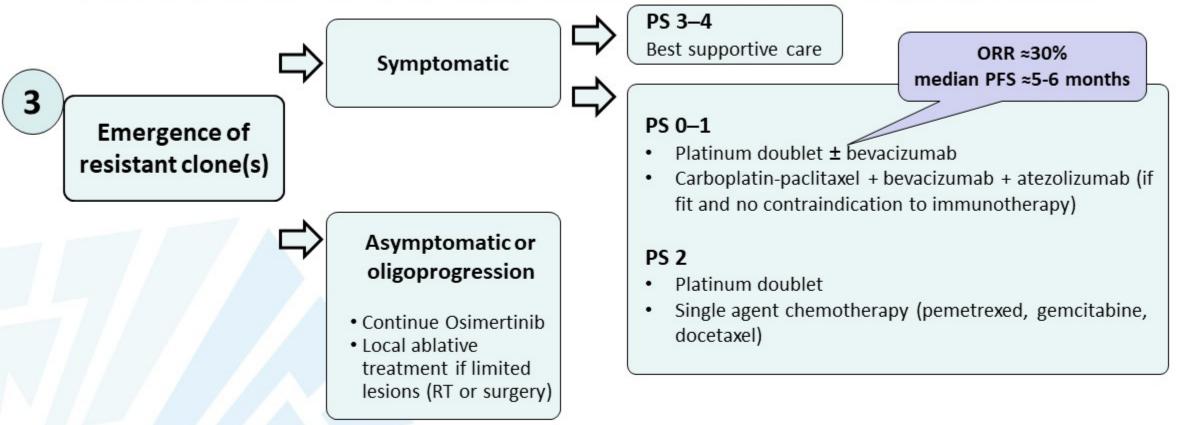

1

> resistance to 1L Osimertinib

Disease progression in CNS due to poor penetration of drug

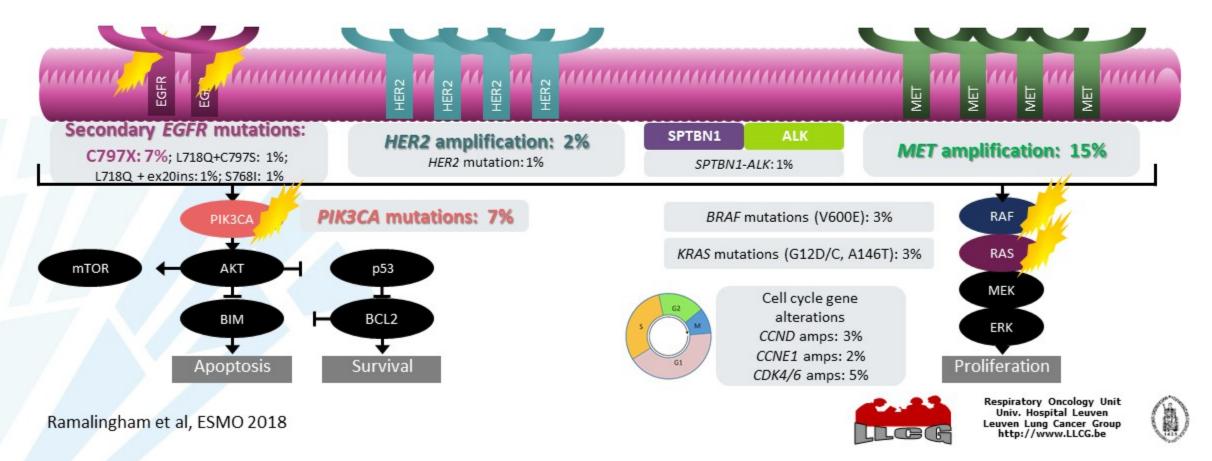
Far less common with Osimertinib, compared to 1st/2nd gen TKI ٠

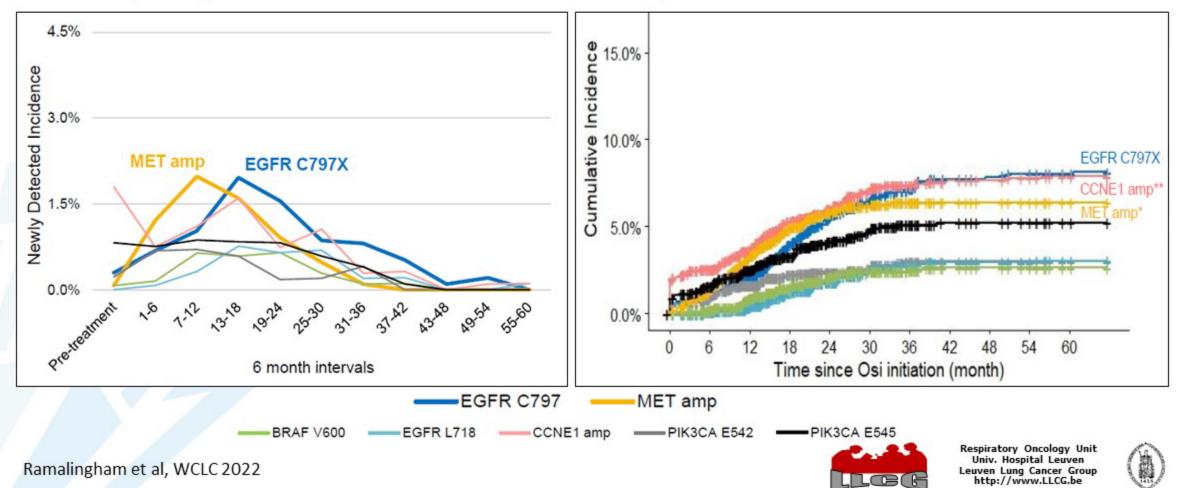



> resistance to 1L Osimertinib

> resistance to 1L osimertinib: ESMO treatment recommendations

Note: role of immunotherapy in this setting -> topic of ongoing clinical trials (KN-789 ; CM-722)


Note: role of continuing Osimertinib with platinum doublet -> to be evaluated in clinical trials


> resistance to 1L Osimertinib: FLAURA ctDNA analysis (n=91)

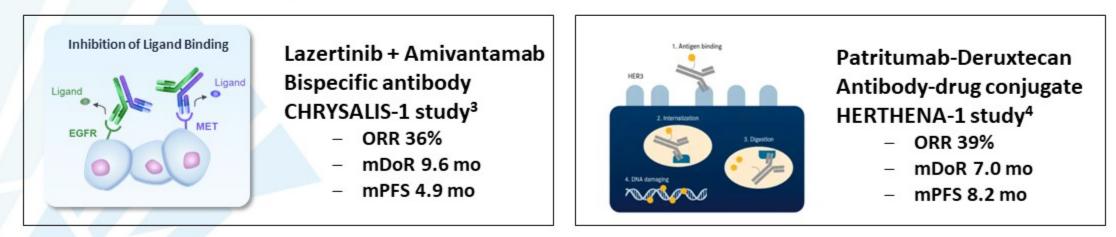
- Intra-pathway ('on target'): most common resistance mechanism was EGFR C797S mutation
- Bypass pathway ('off-target'): most common resistance mechanism was MET amplification
 - Other mechanisms included HER2 amplification, PIK3CA, RAS pathway mutations, CDK amplifications

> resistance to 1L Osimertinib: INFORM database (n=1337)

 INFORM: database with de-identified records of US advanced cancer patients with clinical cfDNA results [testing either Guardant360 CDx or Guardant360]

> off-target druggable alterations: the MET amplification example

	NCT01610336 ¹	TATTON (NCT02143466) ²	INSIGHT2 (NCT03940703) ³
Phase	1b/2	1b [expansion B cohorts and D cohort]	2
Treatment arms	Capmatinib (400 mg/d) + Gefitinib (250 mg/d)	Savolitinib (600/300 mg/d) + Osimertinib (80 mg/d)	Tepotinib 500 mg/d + Osimertinib 80 mg/d
Patients (n)	161	69/51/18/36	88
Molecular group	Biomarker seeking study 'MET dysregulation'	<i>MET</i> amplified* * <i>MET</i> GCN ≥5 and	<i>MET</i> amplified* /or <i>MET/CEP7</i> ≥2
ORR (%)	27 [47 if GCN >6]	30 / 65 / 67 / 64	55
mPFS (months)	Variable [5.5 if GCN >6]	5.4/9.0/11.0/9.1	NR
TREAs ≥grade 3 (%)	57	57	24
Most common TRAEs	Nausea/Fatigue Peripheral edema	Fatigue Nausea / Decreased appetite	Diarrhea/Paronychia Peripheral edema
Discontinuation for AEs	N=27 (17%)	N=38 (28%)	N=6 (7%)
Ph3 vs. plat-pemetrexed	GeoMETry-ENCT04816214	Saffron NCT05261399	


1 Wu et al, J Clin Oncol 36:3101-3109, 2018 2 Sequist et al, Lancet Oncology 21:373-386, 2020 3 Mazieres et al, ESMO 2022, LBA52

> on-target alterations

- Platinum-pemetrexed is standard
- Alternatives
 - Adding anti-EGFR monoclonal, e.g. Afatinib+Cetuximab¹ toxicity!
 - Adding Gefitinib in case of resistance mutation in trans with T790M² (2nd line use of Osimetinib)
- "Mutation agnostic" options

1 Horn et al, Lung Cancer 113:51-58, 2017 2 Arulanda et al, J Thorac Oncol 12:1728-1732, 2017 3 Bauml et al, ASCO 2021, abstr 9006 4 Janne et al, Cancer Discov 12:74-89, 2022

- Case study
- Optimal 1st line therapy
 - Osimertinib
 - Sequencing?
 - Other 3rd generation TKIs
- Failure post-osimertinib
 - CNS failure
 - Histologic transformation
 - Known molecular mechanism
 - No specific findings
- Uncommon EGFR mutations
- Conclusion

NSCLC EGFRmut+ > uncommon (sensitizing) mutations

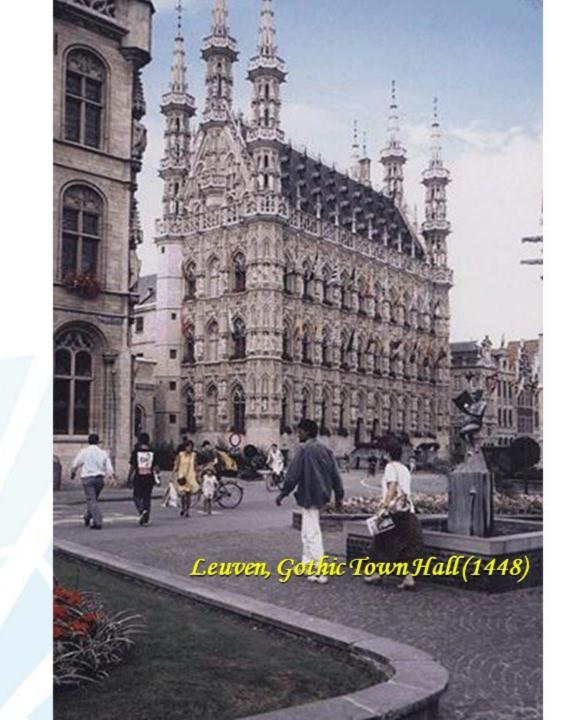
Treatment outcome of atypical *EGFR* mutations in the German National Network Genomic Medicine Lung Cancer (nNGM)

M. Janning^{1,2,3,4}, J. Süptitz⁵, C. Albers-Leischner⁴, P. Delpy^{1,6,7}, A. Tufman⁸, J.-L. Velthaus-Rusik⁴, M. Reck⁹, A. Jung^{10,11}, D. Kauffmann-Guerrero⁸, I. Bonzheim¹², S. Brändlein¹³, H.-D. Hummel¹⁴, M. Wiesweg¹⁵, H.-U. Schildhaus¹⁶, J. A. Stratmann¹⁷, M. Sebastian¹⁷, J. Alt¹⁸, J. Buth¹⁹, I. Esposito¹⁹, J. Berger²⁰, L. Tögel²¹, F. C. Saalfeld²², M. Wermke²², S. Merkelbach-Bruse²³, A. M. Hillmer^{23,24}, F. Klauschen^{10,11}, C. Bokemeyer⁴, R. Buettner²³, J. Wolf^{5†} & S. Loges^{1,2,3,4+†}, National Network Genomic Medicine Lung Cancer (nNGM)

- 10-30% of all EGFR mutations, sensitivity to classical EGFR-TKIs highly heterogeneous
- Retrospective, multi-center study of the nNGM: 856 cases with atypical EGFR mutations¹
- Three groups
 - 1. Clear response data for G719X, L861Q, S768I, or compound mutations
 - 2. Variable response data for very rare EGFR mutations (single point, ex18 deletions, ex19 insertions)
 - 3. Ex20 insertions: notoriously resistant to all generations of standard EGFR-TKIs
- Suggested therapy
 - 1. Afatinib² or Osimertinib³
 - 2. TKI, or platinum-pemetrexed chemotherapy for mutations with limited or missing data
 - 3. Platinum-pemetrexed in 1st line, EMA approval for Amivantamab 2nd line use⁴

1 Janning et al, Ann Oncol 33:602-615, 2022 2 Yang et al, Lancet Oncol 16:830-838, 2015 3 Cho et al, J Clin Oncol 38:488-495, 2020 4 Park et al, J Clin Oncol 39:3391-3402, 2021

- Case study
- Optimal 1st line therapy
 - Osimertinib
 - Sequencing?
 - Other 3rd generation TKIs
- Failure post-osimertinib
 - CNS failure
 - Histologic transformation
 - Known molecular mechanism
 - No specific findings
- Uncommon EGFR mutations
- Conclusion



NSCLC EGFRmut+ > conclusion

- EGFR mutation is a prime story in personalized oncology
 - From first Gefitinib dosing (1998) to contemporary 1st line Osimertinib (3-year survival >50%)
- Unraveling clinical types & mechanisms of acquired resistance: work in progress
 - Role of ablative therapies in oligoprogression
 - Drugs targeting MET-amplification: proof of principle of adapted targeted therapy
 - Emerging "mutation agnostic" options
- New combination strategies in 1st line not adopted as standards (yet)
 - EGFR-TKI + anti-angiogenic: prolongation of PFS, not OS. Increased toxicity and loss of convenience
 - EGFR-TKI + chemotherapy: no data with Osimertinib -> wait for FLAURA2 phase 3 trial results
 - "Pre-emptive strategies", e.g. EGFR-TKI + MET-inhibition -> ongoing early trials

Thank you for your kind attention

Other Targets in NSCLC

Anne-Marie Dingemans, MD, PhD

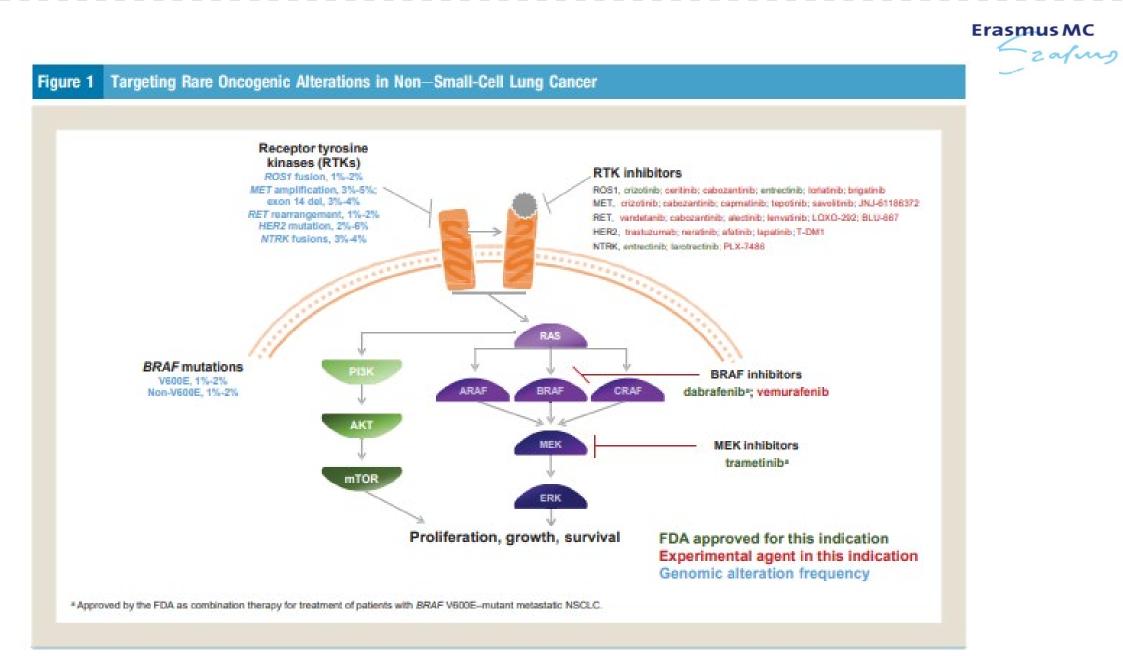
Cancer Institute

zamo

Other targets in NSCLC ROS1, RET, MET, NTRK

Global Lung Cancer Academy November 14th 2022

Prof Anne-Marie C. Dingemans, Respiratory Physician a.dingemans@erasmusmc.nl



Disclosures Anne-Marie Dingemans All paid to institute

S MC Cancer Institute

Relationship(s)	
Advisory Board, Steering Committee	
Honorarium	
Advisory Board	
Honorarium, Advisory Board	
Honorarium (industry sponsored symposium)	
Honorarium	
Advisory Board, research support	
Honorarium	
Advisory Board	
Honorarium. IDMC	
Advisory Board	
Advisory Board	
Advisory Board	
	Advisory Board, Steering Committee Honorarium Advisory Board Advisory Board Honorarium, Advisory Board Honorarium (industry sponsored symposium) Honorarium Advisory Board, research support Advisory Board Honorarium Advisory Board Advisory Board

Marmarelis ME, Langer CJ. Clin Lung Cancer. 2020;21:395-406.

Cancer Institute

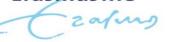
Rare Cancers \neq RCT

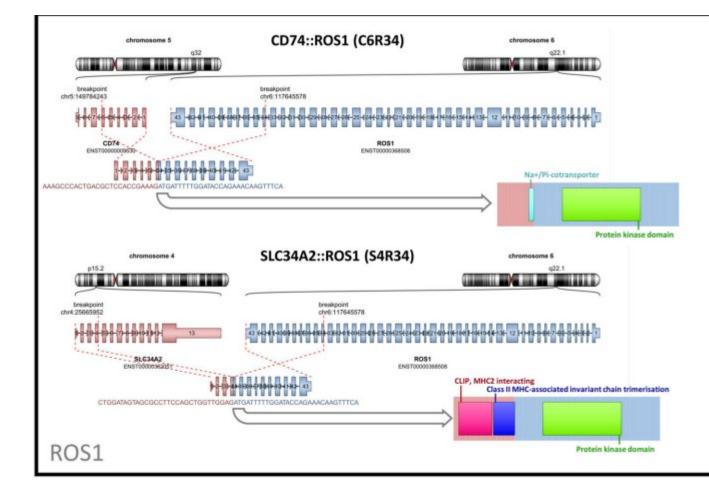
- Single arm phase II
- Readout: waterfall plot
- Overall Response Rate
- **Duration of Response**
- Toxicity
- Intracerebral efficacy

Why is Vitrakvi authorised in the EU?

Vitrakvi differs from many other cancer medicines by targeting certain tumours with a speci arrangement wherever they occur in the body. Although studies are still underway, the results released so far show that it is effective at reducing the size of patients' tumours. In addition, the short time taken to shrink the tumours is important in relieving patients' symptoms.

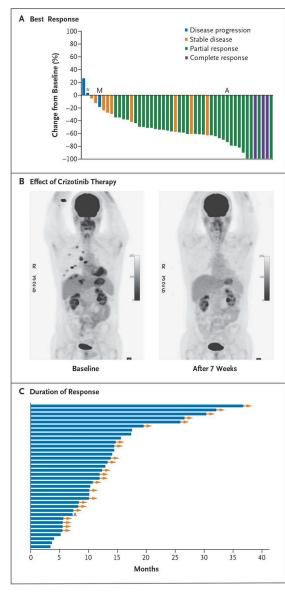
As for its safety, the side effects of Vitrakvi appear manageable. The European Medicines Agency therefore concluded that its benefits are greater than its risks and that it can be authorised for use in the EU.

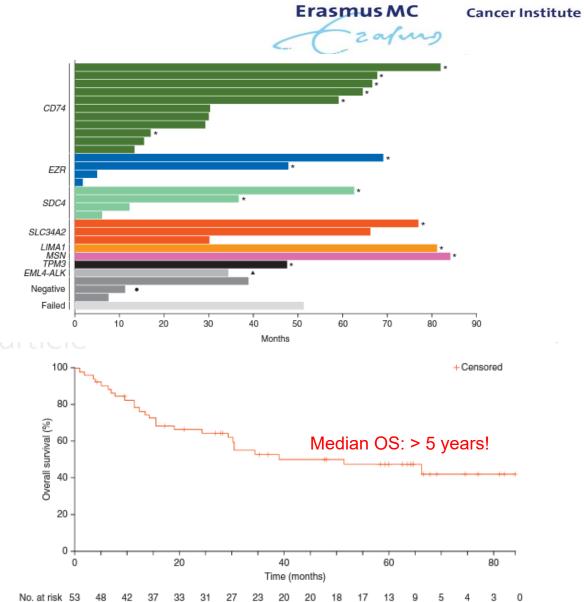

Vitrakvi has been given 'conditional authorisation'. This means that there is more evidence to come about the medicine, which the company is required to provide. Every year, the Agency will review any new information that becomes available and this overview will be updated as necessary.


Cancer Institute

Larotrectinib EMA Approval 10/2019

Cancer Institute


ROS1 fusion

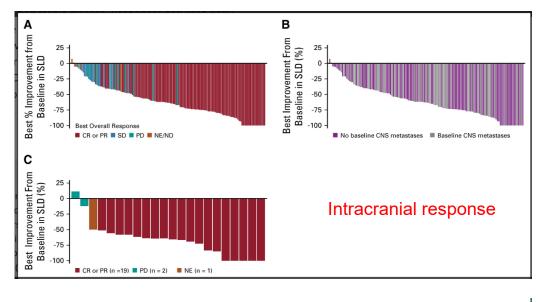


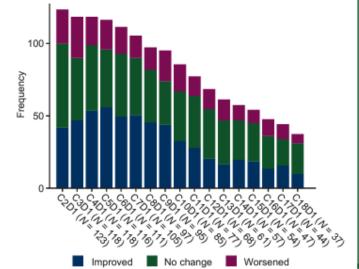
Method	
IHC	Screening
FISH	
(RNA-based) NGS	Fusion partner

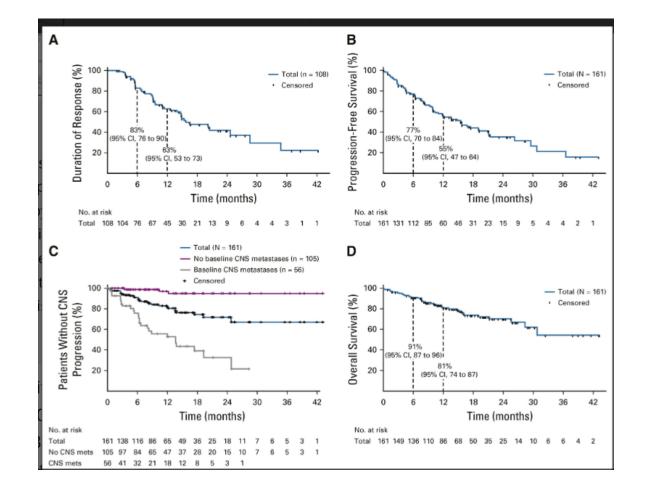
Kazdal, Genes Chromosomes Cancer 2022;61:244-260

Crizotinib **PROFILE 101**

Shaw, NEJM, 2014;371:1963-1971 Shaw, Annals of Oncology 2019;30:1121-1126

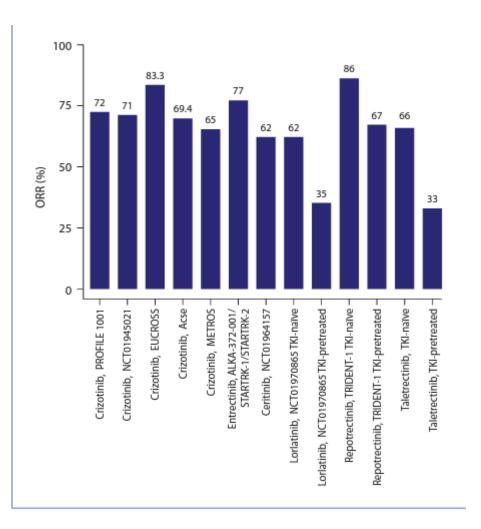

Entrectinib ALKA-372-001 / STARTK-1/STARTK-2




Cancer Institute

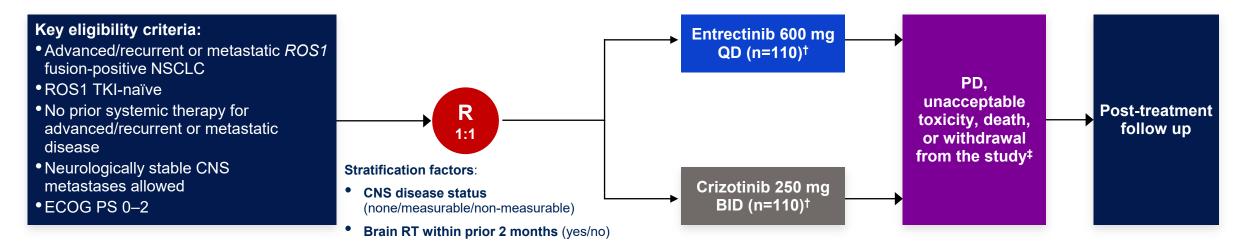
Dziadziuszko, JCO 2021;39:1253-1263 Paz-Ares, ESMO open;2021

Targeting ROS1


ROS1 TKI	Clinical trial	Setting	Outcomes
Crizotinib	PROFILE 1001	Advanced ROS1 ⁺ NSCLC	mPFS 19 months; mOS 51.4 months 72% ORR
Crizotinib	NCT01945021	Advanced ROS1 ⁺ NSCLC	mPFS 15.9 months; 71% ORR
Crizotinib	EUCROSS	Advanced ROS1 ⁺ NSCLC	mPFS 16.8 months; 83.3% ORR
Crizotinib	Acsé	Advanced ROS1 ⁺ NSCLC	mPFS 5.5 months; mOS 17.2 months 69.4% ORR
Crizotinib	METROS	Advanced ROS1 ⁺ NSCLC	mPFS 22.8 months; mOS not reached; 65% ORR
Entrectinib	ALKA-372-001, STARTRK-1, STARTRK-2	Advanced ROS1 ⁺ NSCLC	mPFS 19 months; mOS not reached 77% ORR; 55% intracranial ORR
Ceritinib	NCT01964157	Advanced ROS1 ⁺ NSCLC	mPFS 9.3 months; mOS 24 months; ORR 62%
Lorlatinib	NCT01970865	TKI-pre-treated ROS1 ⁺ NSCLC	mPFS 21 months (TKI naive); mPFS 8.5 months (TKI pre-treated); 62% ORR (TKI naive); 35% ORR (TKI pre treated)
Repotrectinib	TRIDENT-1	TKI-pre-treated ROS1 ⁺ NSCLC	86% ORR (TKI naive); 40–67% ORR (TKI pre-treated)
Taletrectinib	NCT02279433, NCT02675491	TKI-pre-treated ROS1 ⁺ NSCLC	66% ORR (TKI naive); 33% ORR (TKI pre-treated)

response rate; TKI, tyrosine kinase inhibitor.

Erasmus MC


Cancer Institute

Study design

- This is a randomized, open-label, multicenter, phase 3 head-to-head trial, designed to compare the efficacy and safety of entrectinib vs crizotinib in adult patients with:
 - ROS1 TKI-naïve advanced/recurrent or metastatic ROS1 fusion-positive NSCLC
 - With or without CNS metastases that are neurologically stable

NCT04603807

Randomization will be performed centrally via an interactive voice or web-based response system (IxRS); [†]Estimates based on planned enrollment; [‡]Patients with radiographic disease progression or isolated asymptomatic CNS progression may continue treatment at the investigator's discretion

BID, twice daily; ECOG PS, Eastern Cooperative Oncology Group Performance Status; PD, progressive disease; QD, once daily; R, randomized; RT, radiotherapy

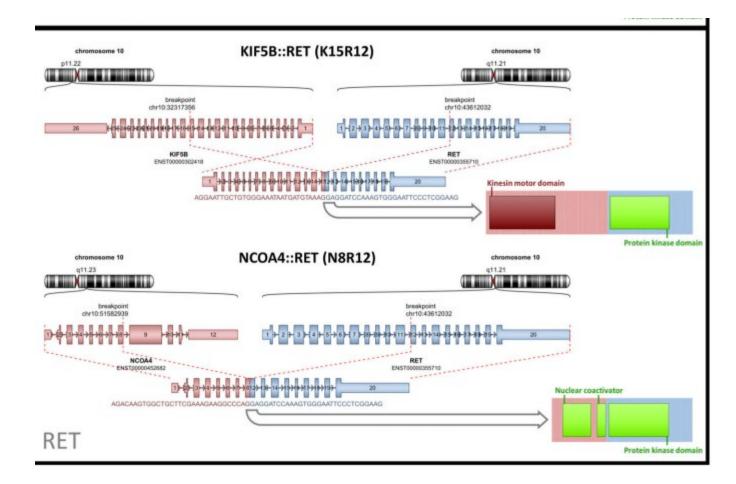
Dingemans, ASCO 2022 TiP

Cancer Institute

zafing

ROS1 translocation

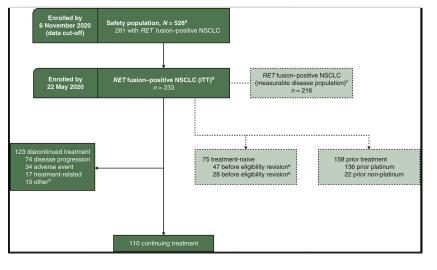
	crizotinib	entrectinib
Ν	53	161
Dose	250 mg QD	600 mg OD
Biomarker	+	+
ORR (%(95% CI)	72 (58-83)	67 (59.3-74.3)
Time to response (weeks (95% CI)	7.9 (4.3-103.6)	
DoR (mts (95% CI)	24.7 (15.2-45.3)	15.7 (13.9-28.6)
Intracranial RR	82% 19/22	62%
Toxicity		
Special toxicity	Visual disturbance, edema	See NTRK
		first line

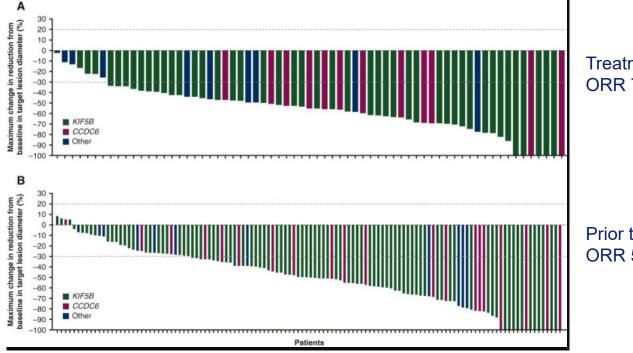

Dziadziuszko, JCO 2021;39:1253-1263 Shaw, Annals of Oncology 2019;30:1121-1126

This is not intended as a head-to-head comparison

Cancer Institute

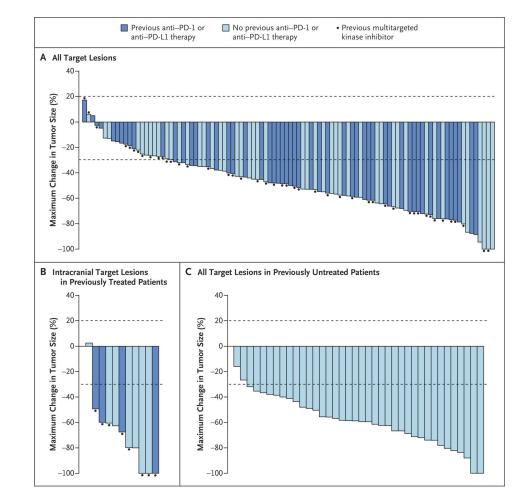
Method	
IHC	Screening
FISH	
(RNA-based) NGS	Fusion partner

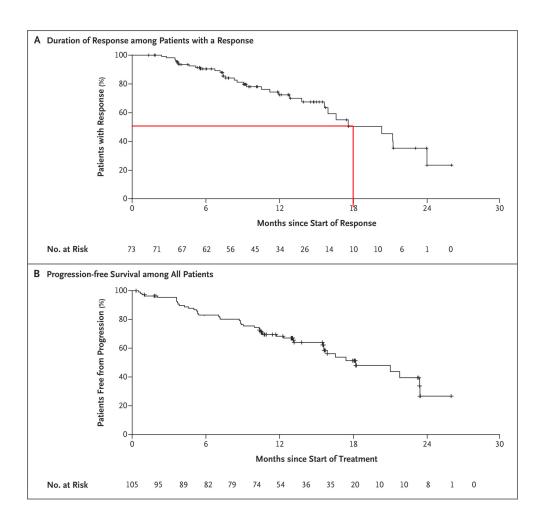

Not restricted to Adenocarcinoma!


Kazdal, Genes Chromosomes Cancer 2022;61:244-260

Pralsetinib ARROW trials

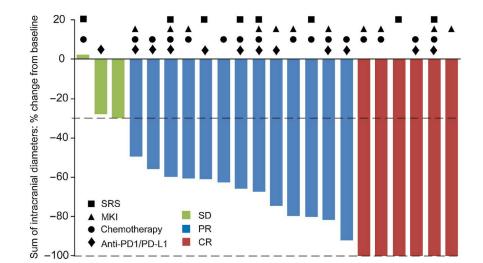
Cancer Institute

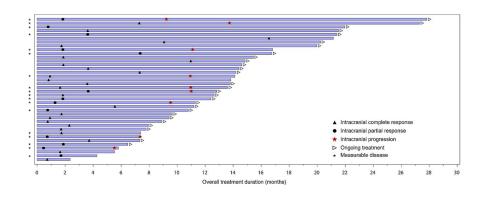

Treatment naive (N=75): ORR 72% (95% CI 60-82)

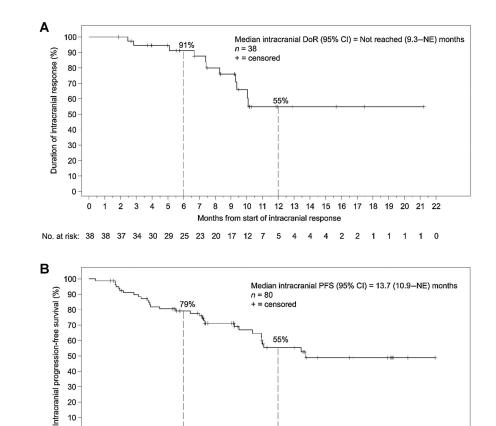

Prior treatment (N=136) ORR 59% (95% CI 50-67)

Griesinger, Annals of Oncology 2022;33:1168-11778

Selpercatinib Libretto-001




Drilon, *NEJM 2020;383:813*


Cancer Institute

Selpercatinib: intracranial efficacy (LIBRETTO-001)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

No. at risk: 80 79 72 69 62 61 52 50 38 38 30 26 21 21 11 10 10 8

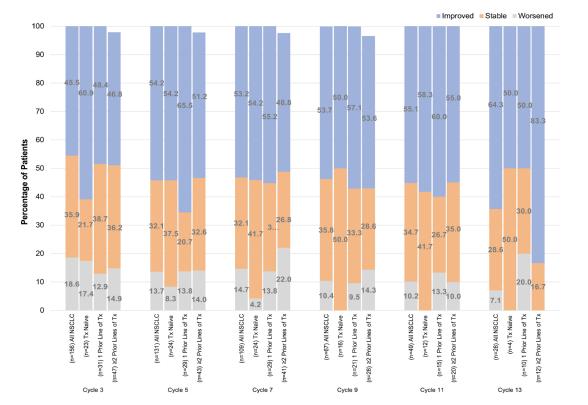
Months from start of treatment

0

Subbiah, Clin Cancer Res. 2021;27(15):4160-4167

8 7

2 1 0


Change in global health status/quality of life from baseline by cycle of Selpercatinib

Cancer Institute

N=253

Clinical meaningful improvements of global health status: 61 – 67%

Minchon, The Oncologist 2022;27:22-29

zafing

Cancer Institute

RET translocation

	selpercatinib		pralsetinib		
	untreated	pretreated	untreated	Pretreated platinum	Pretreated non- platinum
Ν	39	105	75	136	22
Dose	160 n	ng QD		400 OD	
ORR (%(95% CI)	85 (70-94)	64 (54-73)	72 (60-82)	59 (50-67)	73 (50-89)
Time to response			1.8 (0.9-6.1)	1.8 (1.3-11.4)	1.8 (1.6-5.5)
DoR (mts (95% CI)	NE (12 –NE)	17.5 (12-NE)	NR (9.0 – NR)	22.3 (15.1-NR)	NR (9.2-NR)
Intracranial RR	82% 19/22		70% 7/10, 3 CR		
Toxicity gr 3⁄4	38	3%	52%	56	3%
Special toxicity	Hypertension, increase transaminases		es Hypertension, neutropenia, anemia, increase transaminased, pneumonitis (2%)		ease
*** * * * *					

Drilon, *NEJM 2020;383:813* Subbiah, *Clin Cancer Res. 2021;27(15):4160-4167* Griesinger, *Annals of Oncology 2022;33:1168-11778*

This is not intended as a head-to-head comparison

Current approaches to target cMET

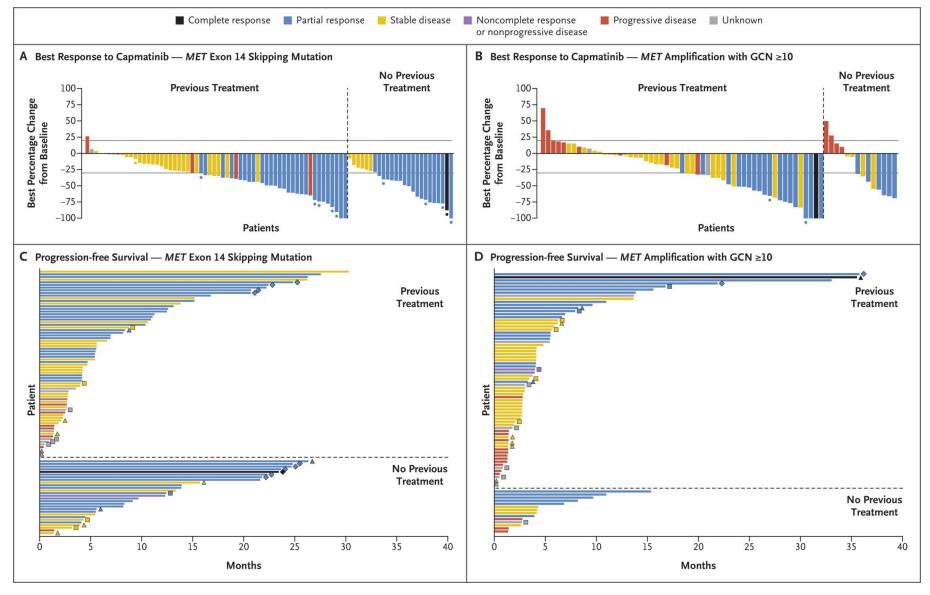
- Different mechanisms of MET activation
 - cMET overexpression, amplification, exon 14 skipping mutations, fusions, heterodimerisation
- Convergent resistance mechanisms for several RTKs
 - EGFR, KRAS, RET-rearranged NSCLC^{1,2,3}
 - Significant cross-talk in pathways
- Capmatinib and tepotinib (Class Ib) approved for MET exon 14 skipping mutations
 - GEOMETRY⁴
 - o 2/3L ORR 41%, PFS 5.4 m
 - o 1L ORR 68% PFS 12.4 m
 - VISION⁵
 - o 2/3L ORR 47.7%, PFS 11.1 m
 - o **1L** ORR 54.7%, PFS 15.3 m

Sarcomatoid Lung Cancer

Erasmus MC

zalus

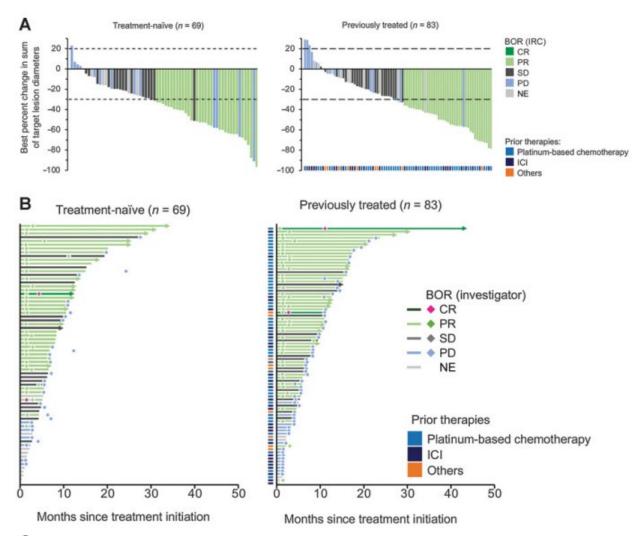
Category	Drug	Status
ткі		
Type la	Crizotinib	Approved in ALK/ROS
Type Ib	Capmatinib Tepotinib	Approved Approved
Type II	Cabzantinib	Approved in RCC
Type III	Tivantinib	Failed phase III
Antibodies		
Anti HGF	Ficlatuzumab	Failed phase II
Anti cMET	Ornatuzumab	Failed phase III
cMET-EGFR Bispecific Ab	Amivantamab	Approved EGFR ex20ins

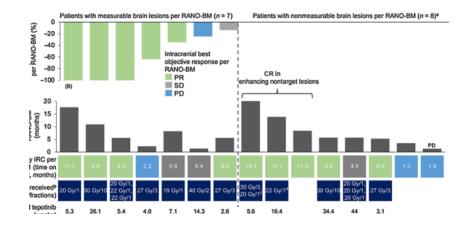

1. Chua et al. CCR 2021; 2. Awad et al. NEJM 2021; 3. Lin et al. Ann Oncol 2020; 4. Wolf et al. NEJM 2020; 5. Paik et al. NEJM 2020

Cancer Institute

Cancer Institute

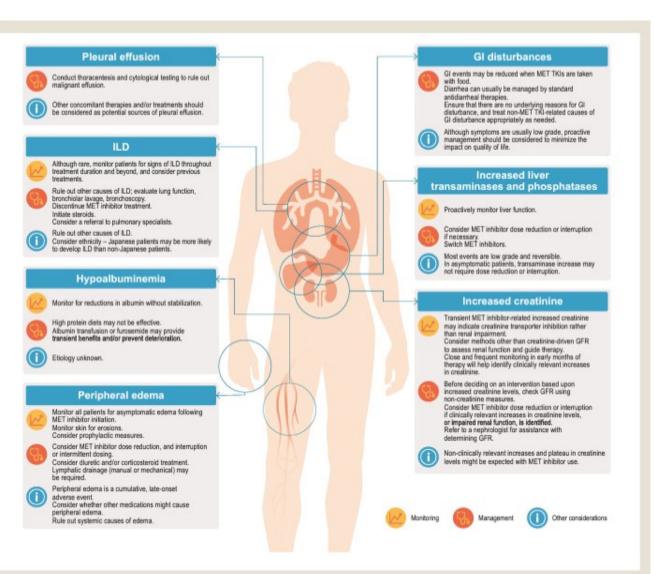
zafing


Capmatinib



Wolf, NEJM 2020;383:944-957

Tepotinib Ph II, Vision trial


Le, CCR, 2022:28:1117-1126

Toxicity of MET TKI in *MET*ex14

Erasmus MC

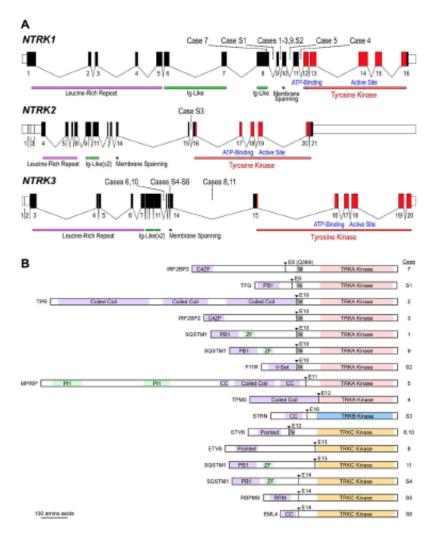
Cancer Institute

zafing

Cortot, Clinical Lung Cancer, 2022;23:195-207

Cancer Institute

zafing


METex14 skipping mutation

	capmatinib		tepotinib	
	untreated	pretreated	unteated	pretreated
Ν	28	69	69	83
Dose	400 mg	g QD	450 OD	
ORR (%(95% CI)	68 (48 – 84)	41 (29-53)	45 (33-57)	45 (35-56)
Time to response	68% at 1st assessment	82% at 1st assessment		
DoR (mts (95% CI)	12.6 (5.6 – NE)	9.7 (5.6 -13)	10.8 (6.9- NE)	11.1 (9.5 – 18.5)
Intracranial RR	7/13, 4 CR		5/7, 3	3 CR
Toxicity gr ³ ⁄ ₄	46%	6	24	%
Special Toxicity	Peripheral edema, nausea		Peripheral edem	na, pneumonitis

This is not intended as a head-to-head comparison

Wolf, NEJM 2020;383:944-957 Le, CCR, 2022:28:1117-1126

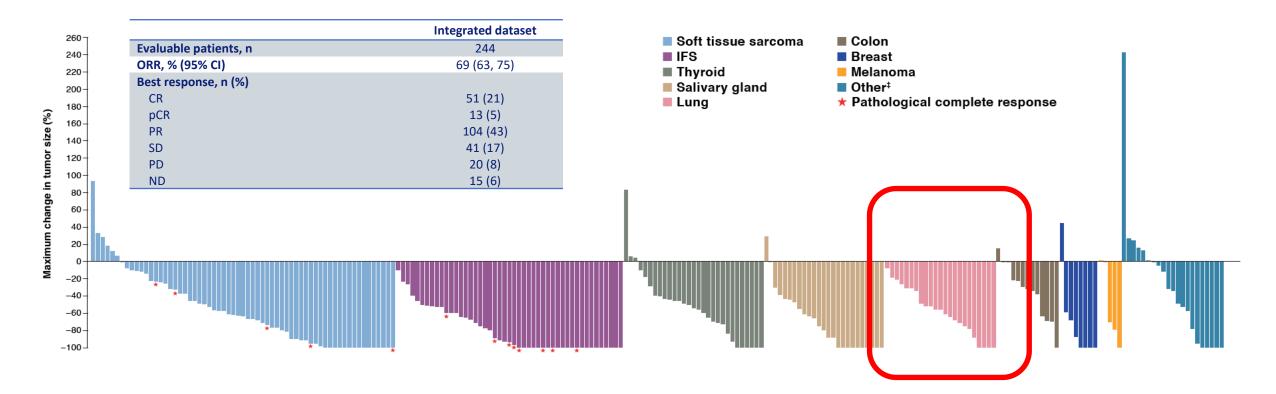
NTRK fusions: A rare event in lung cancer

	MGH	MSKCC	Total	Frequency, % (95% CI)
NSCLC screened	1804	3068	4872	
NTRK1	2	4	6	0.12 (0.05-0.27)
NTRK2	0	1	1	0.02 (0.00-0.11)
NTRK3	2	2	4	0.08 (0.02-0.21)
All NTRK fusions	4	7	11	0.23 (0.11-0.40)

CI, confidence interval; MGH, Massachusetts General Hospital; MSKCC, Memorial Sloan Kettering Cancer Center; NSCLC, non-small cell lung cancer. Farago AF, et al. *JCO Precis Oncol.* 2018:PO.18.00037.

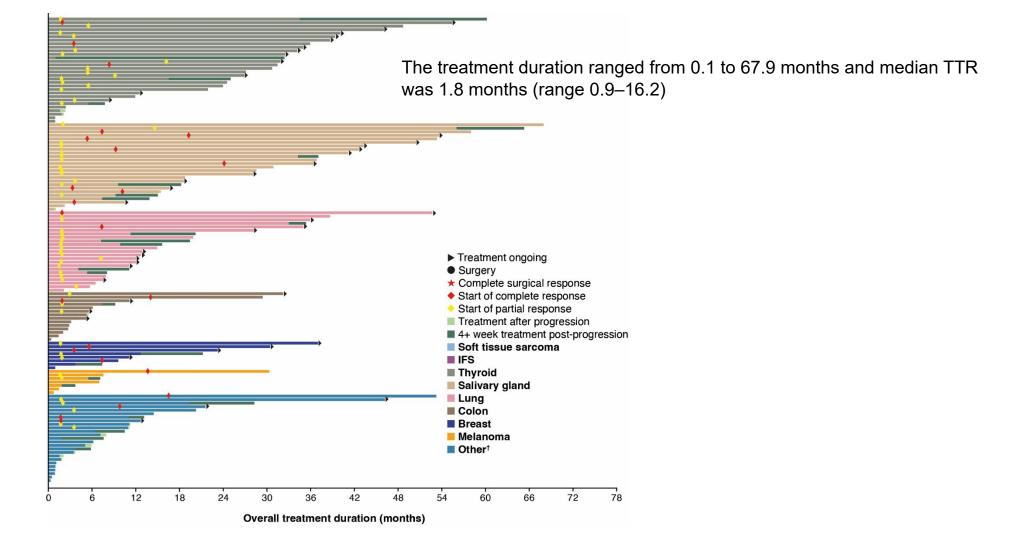
Erasmus MC

zafing


Cancer Institute

Cancer Institute

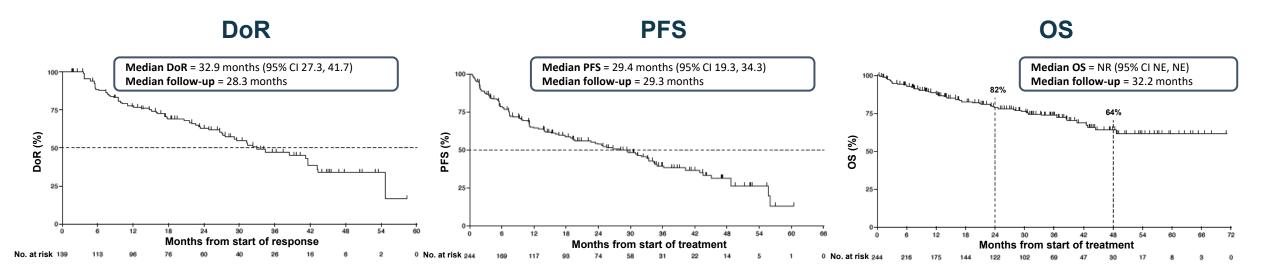
Larotrectinib: Tumour response (N=234)



CR, complete response; IFS, infantile fibrosarcoma; ND, not determined; ORR, overall response rate; pCR, pathological complete response; PD, progressive disease; PR, partial response; SD, stable disease.

Drilon A, et al. J Clin Oncol. 2022;40(16_suppl):3100-3100.

Larotrectinib: Treatment duration

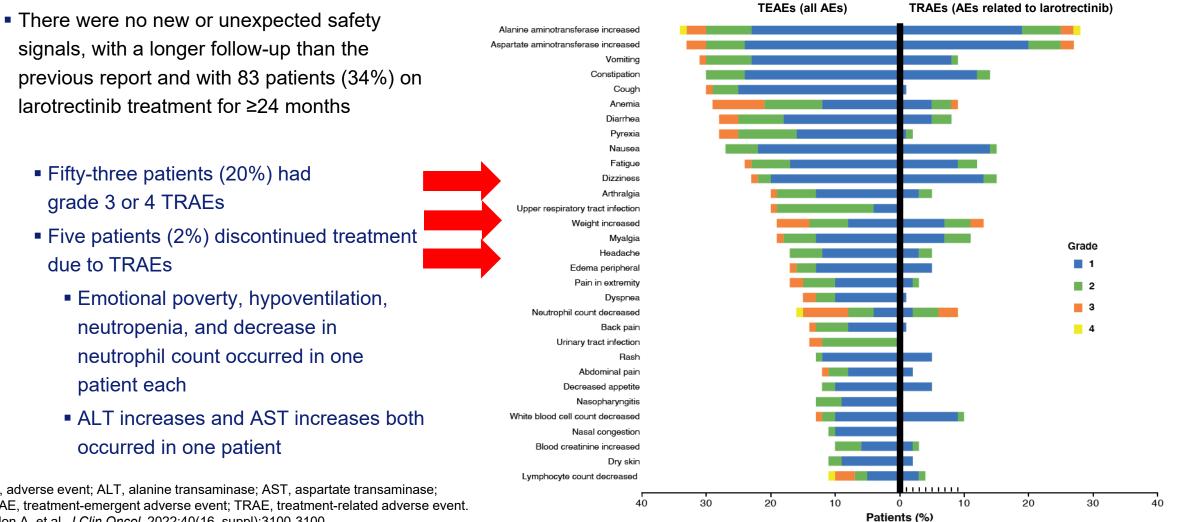

IFS, infantile fibrosarcoma; TTR, time to response. Drilon A, et al. *J Clin Oncol.* 2022;40(16_suppl):3100-3100.

Cancer Institute

Larotrectinib: Median duration of response: 32.9 MTS

Efficacy assessments for subset of patients enrolled with a minimum follow-up of 28 months*

	Exploratory dataset
Evaluable patients, n	164
ORR, % (95% CI)	74 (67, 81)
Median DoR, months, (95% CI)	34.5 (27.6, 43.3)
Median follow-up, months	34.1

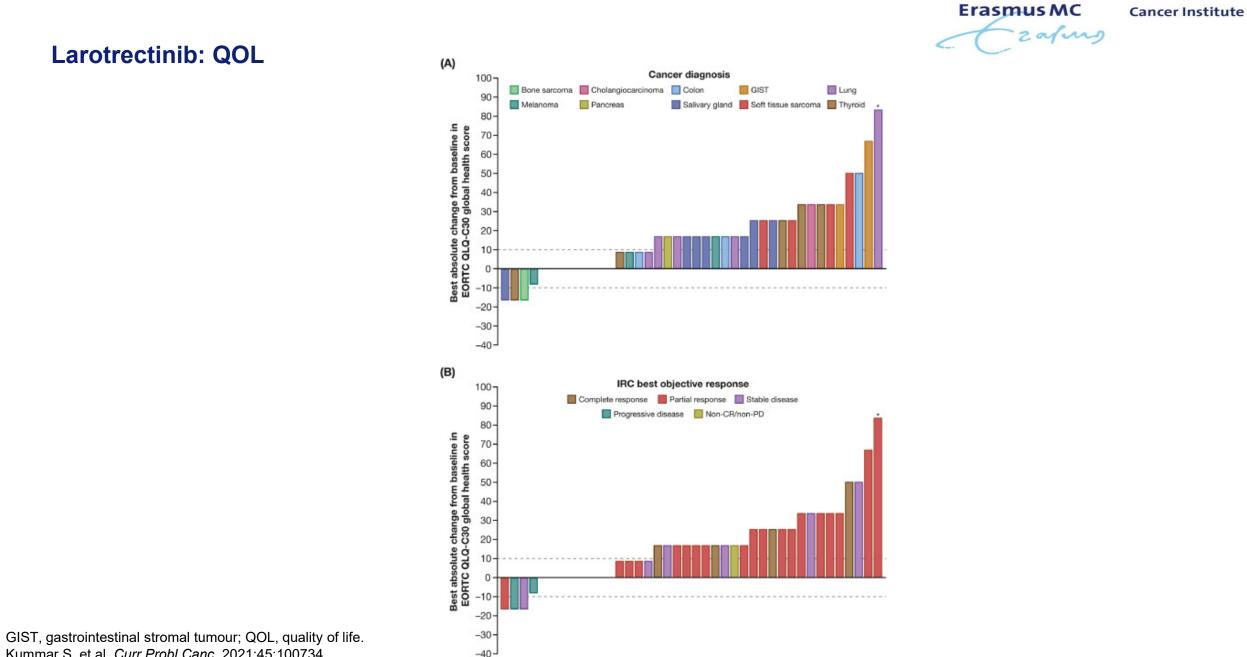

CI, confidence interval; DoR, duration of response; MTS, months; NE, non-estimable; ORR, overall response rate; OS, overall survival; PFS, progression-free survival. Drilon A, et al. J Clin Oncol. 2022;40(16_suppl):3100-3100.

Acceptable toxicity; but on-target under reported?

Erasmus MC

zalus

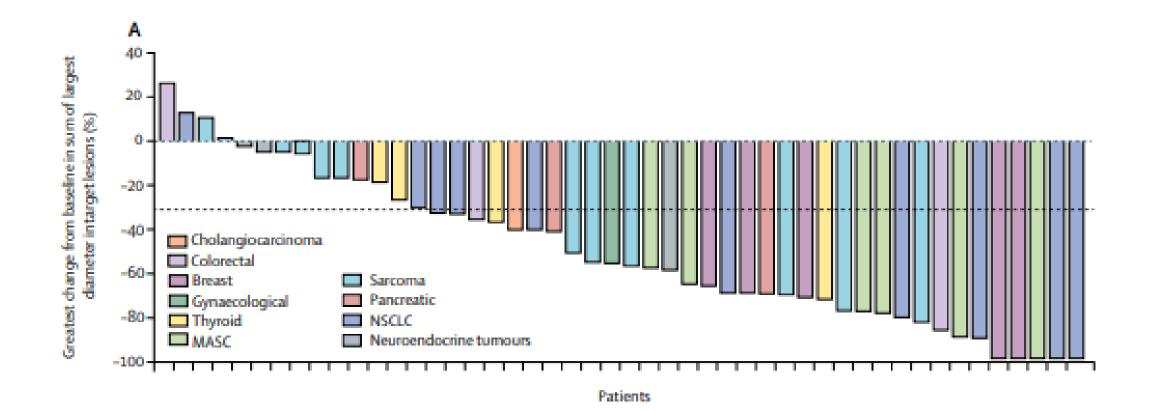
Cancer Institute



AEs that occurred in ≥10% of patients

signals, with a longer follow-up than the previous report and with 83 patients (34%) on larotrectinib treatment for ≥24 months

- Fifty-three patients (20%) had grade 3 or 4 TRAEs
- Five patients (2%) discontinued treatment due to TRAEs
 - Emotional poverty, hypoventilation, neutropenia, and decrease in neutrophil count occurred in one patient each
 - ALT increases and AST increases both occurred in one patient

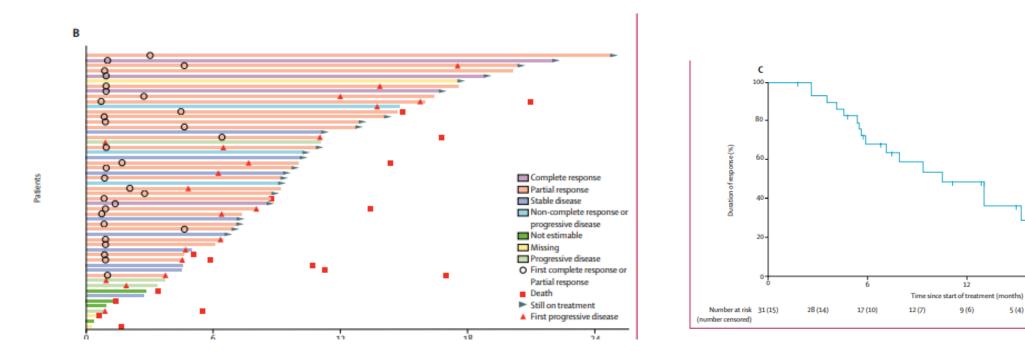

AE, adverse event; ALT, alanine transaminase; AST, aspartate transaminase; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event. Drilon A, et al. J Clin Oncol. 2022;40(16_suppl):3100-3100

Kummar S, et al. Curr Probl Canc. 2021;45:100734.

Entrectinib ORR: 57% (95% CI 43-71); N=54

CI, confidence interval; MASC, mammary analogue secretory carcinoma; NSCLC, non-small cell lung cancer; ORR, overall response rate. Doebele RC, et al. *Lancet Oncol.* 2020;21:271–282.

Entrectinib: Median time to response 'rapid' Duration of response: 10 MTS (95% CI, 7.1 – NE)

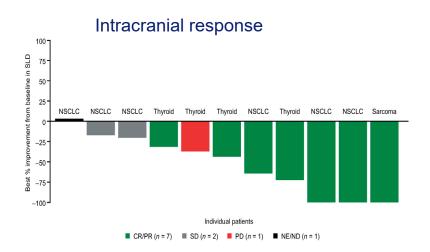


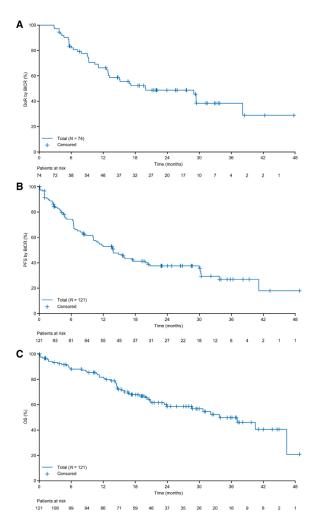
18

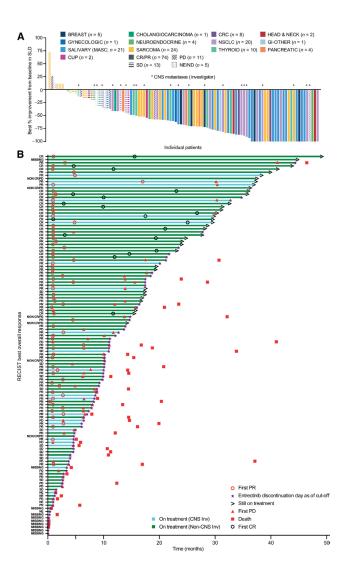
3 (3)

5(4)

Cancer Institute


CI, confidence interval; MTS, months; NE, non-estimable Doebele RC, et al. Lancet Oncol. 2020;21:271-282.


Update entrectinib: STARTRK-1 and STARTRK-2



Cancer Institute

zafing

Demetri GD, et al. Clin Cancer Res. 2022;28:1302-1312.

Acceptable toxicity: But on-target under reported? N=119

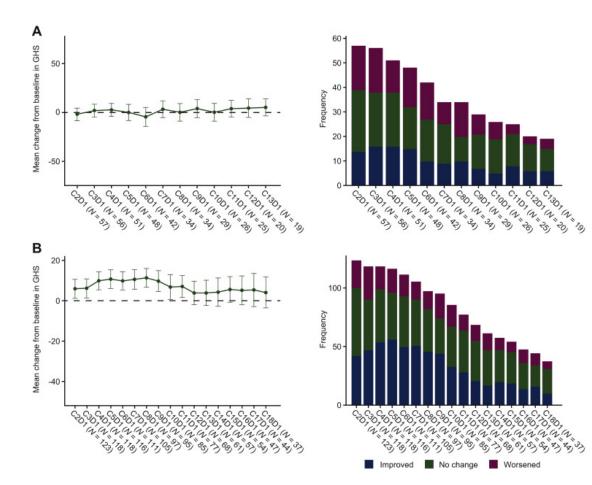
Erasmus MC zafino

USMC Cancer Institute

Dose reductions: 15%

Table 2. Adverse events: Listed below are adverse events reported in at least 10% of the patients (n = 119) with advanced solid tumors who received entrectinib on either phase I trial (ALKA-372-001 or STARTRK-1) and that were deemed by the investigators to be related to study drug

Adverse event, n (%)	Grade 1	Grade 2	Grade 3	All grades (n = 119)
Fatigue/asthenia	28 (24)	22 (19)	5 (4)	55 (46)
Dysgeusia	47 (40)	3 (3)	0	50 (42)
Paresthesia	34 (29)	0	0	34 (29)
Nausea	29 (24)	4 (3)	0	33 (28)
Myalgia	23 (19)	4 (3)	0	27 (23)
Diarrhea	19 (16)	3 (3)	1(1)	23 (19)
Vomiting	19 (16)	1 (1)	0	20 (17)
Arthralgia	12(10)	6 (5)	1(1)	19 (16)
Dizziness	14(12)	5 (4)	0	19 (16)
Constipation	12(10)	2 (2)	0	14(12)
Weight increase	4 (3)	6 (5)	2 (2)	12(10)

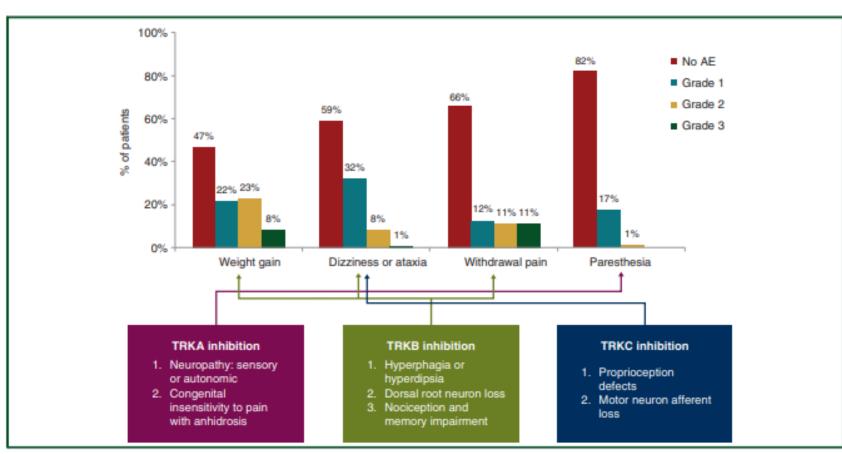

NOTE: There was only one Grade 4 treatment-related adverse event: eosinophilic myocarditis on STARTRK-1. No treatment-related Grade 5 events were reported.

Drilon A, et al. Canc Discov. 2017;7:400-409.

Cancer Institute

zafing

PROM STARTRK-2 entrectinib (ROS1 and NTRK)



Paz-Ares L, et al. *ESMO Open.* 2021;6:100113.

Cancer Institute

TRK-inhibitor: On-target toxicity

Figure 1. Neurologic adverse events observed with TRK inhibition.

The frequency of weight gain, dizziness with or without ataxia, withdrawal pain, and paresthesias are summarized. The frequency of each adverse event is displayed according to the worst grade the patient experienced during therapy. For withdrawal pain, only patients who had dose interruptions and were at risk for this event were

Liu D, et al. Ann Oncol. 2020;31:1207-1215.

Treatment of adverse events

Table 2. Supportive medication				
Adverse event	Agent(s)	Mechanism of action	Dose and schedule	
Weight gain	Liraglutide	GLP-1 analog	0.6—3.0 mg once/day	
	Orlistat	Inhibits fat absorption	60—120 mg three times/day	
	Phentermine/topiramate	Increases norepinephrine release;	3.75/23—15/92 mg once/day	
	combination	GABA receptor agonist		
	Lorcaserin	5-HT _{2C} receptor agonist	10 mg twice/day	
	Naltrexone/bupropion	μ-Opioid receptor antagonist; dopamine and	8/90—16/180 mg once or	
	combination	norepinephrine reuptake inhibitor	twice/day	
	Metformin	Modulates hypothalamic appetite regulatory centers	500—2000 mg once/day	
Dizziness (ataxia or vertigo)	Meclizine	H ₁ histamine receptor antagonist, suppresses vestibular stimulation, anticholinergic	25—50 mg once/day	
	Scopolamine	Antagonizes histamine and serotonin	1 Patch every 3 days	
Dizziness (orthostasis)	Midodrine	α_1 Adrenergic receptor agonist, increases vascular tone	5–10 mg three times/day	
	Fludrocortisone	Mineralocorticoid	0.05-0.2 mg once/day	
	Droxidopa	Metabolized to norepinephrine, induces vasoconstriction	100 mg three times/day	
			(1.8 g/day maximum)	
Withdrawal pain	Nonsteroidal anti-inflammatory agents	COX-1/COX-2 inhibitors	Per agent/label	
	Opioids	Opioid receptor agonists	Per label	
	Gabapentin/pregabalin	GABA analog	Per label	

COX, cyclo-oxygenase; GABA, gamma-aminobutyric acid; GLP-1, glucagon-like peptide 1. Liu D, et al. *Ann Oncol.* 2020;31:1207-1215.

Cancer Institute

Cancer Institute

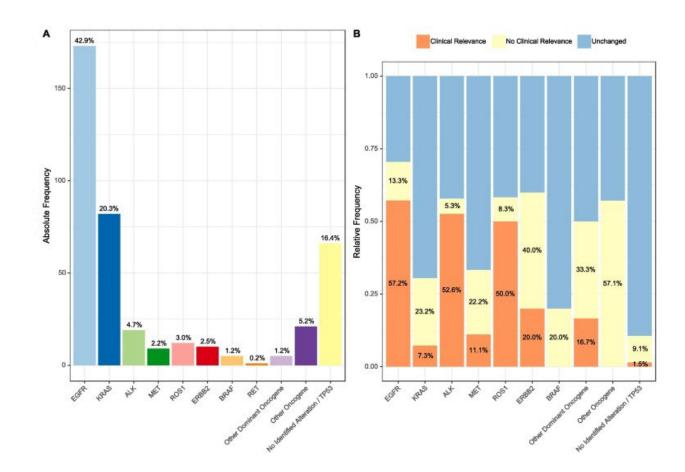
Treating rare mutations: Efficacy assessments

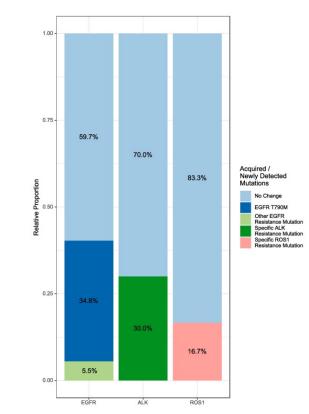
zafing

	LAROTRECTINIB ^{1,2}	
Overall response	69% (95% CI 63-75)	61% (95% CI 51.9-69.9)
Early response/ time to response	1.8 mts (range 0.9-16.2)	0.95 mts
Durable response	32.9 mts (95% CI 27.3-41.7)	20.0 mts (95% CI 13.0-38.2)
CNS activity (RR)	8/10	15/26
PFS	29.4 mts (95% CI 19.3-34.3)	13.8 mts (95% CI 10.1-19.9)
Tolerability: Grade 3-4	20%	41.5%
* * * * * * * * *		

This is not intended as a head-to-head comparison.

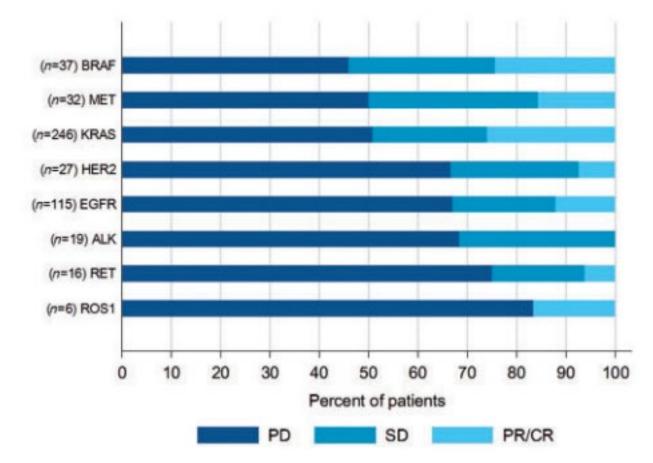
CI, confidence interval; CNS, central nervous system; PFS, progression-free survival; RR, response rate.


1. Drilon A, et al. J Clin Oncol. 2022;40(16_suppl):3100-3100; 2. Drilon A, et al. J Clin Oncol. 2022;40(16_suppl):9024-9024; 3. Demetri GD, et al. Clin Cancer Res. 2022;28:1302-1312.


Erasmus MC zafing

Cancer Institute

Rare mutations AND resistance: rebiopsy!


cirum of resistance mutations in the sense EGFE (n = 172 rotients, n = 181 results). ALK (n = 19 rotients, n = 20 alterations) and RC

Scheffler, Lung Cancer, 2022;168:10-20

Cancer Institute

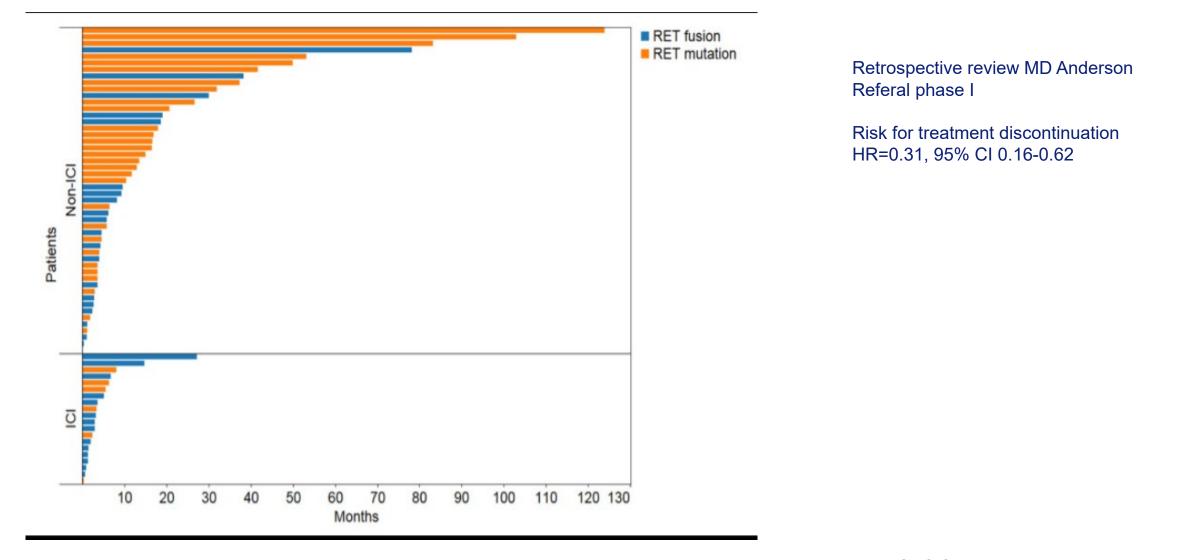
zafing

Immunotherapy?

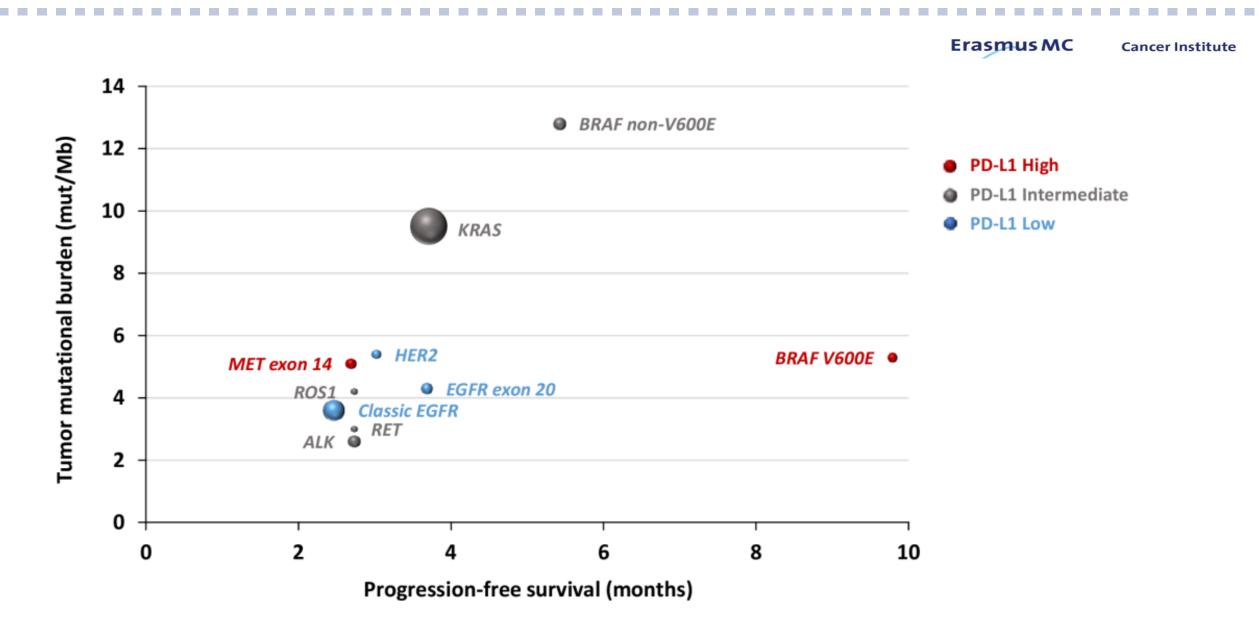
Mazieres, Ann Oncol 2019;30"1321

Erasmus MC zafing

Cancer Institute


TABLE 3 Efficacy of ICIs in NSCLS with <i>c-MET</i> mutations.				
Reference	Characteristics	ORR, %	mPFS, months	mOS, months since start of ICI
Sabari JK. et al. (12)	cMET exon 14 skipping mutation (n=147)	17	1.9	18.2
Mazieres J., et al. (31)	cMET exon 14 skipping mutation and cMET amplification (n=36)	49	3.4	18.4
Guisier F., et al. (47)	cMET mutant (n=30)	36	4.9	13.4
Dudnik- E., et al. (46)	cMET exon 14 skipping mutation (n=148)	12	4	NR (not reached)
	cMET amplification (n=54)	25	4.9	NR (not reached)
Mayenga M., et al. (56)	cMET exon 14 skipping mutations, 2 nd line immunotherapy (n=13)	46.2		

ICIs, immune checkpoint inhibitors; NSCLC, non-small cell lung cancer; ORR, overall response rate; mPFS, median progression-free survival; mOS, median overall survival.


Seegobin et al, Frontiers in Oncol 2021;11

Immunotherapy

Hegde, ESMO Open 2020;5

Negrao et al, J Immunother Cancer 2021;9:e002891

Rare disease ----→>>>> RCT?

.

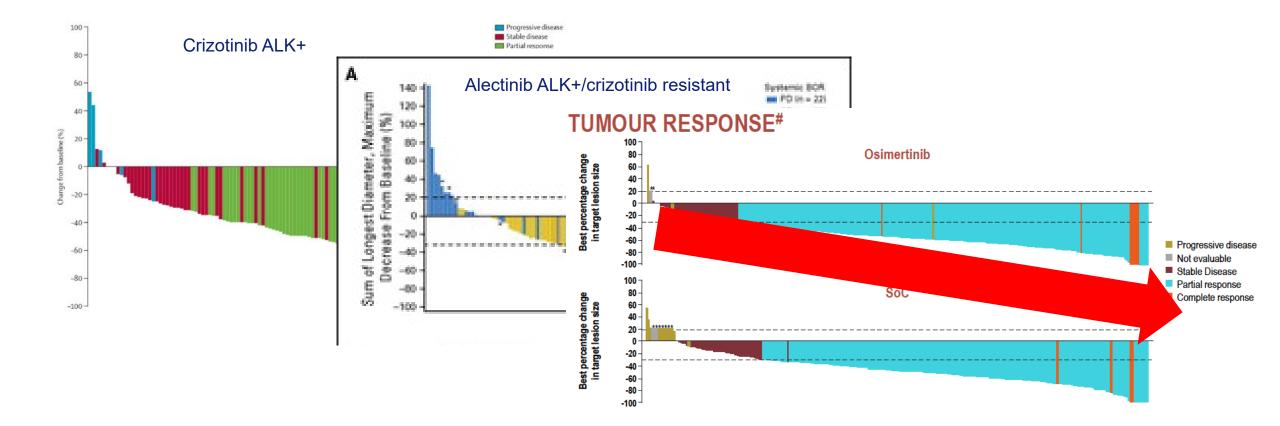
.

Cancer Institute

_ _ _ _ _ _ _ _ _ _ _ _ _ _

 zafing

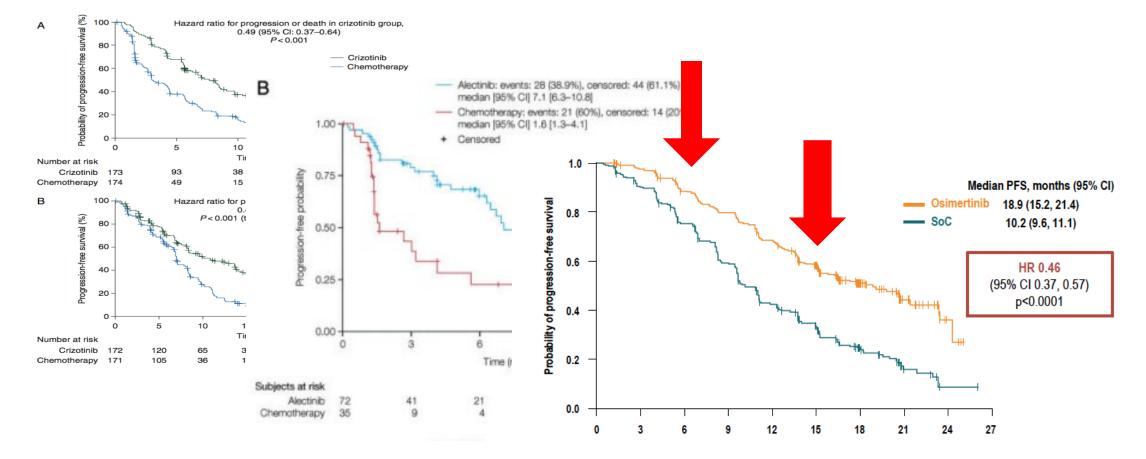
	DRUG	Trial name	number	Ν		comparator
RET fusion	praseltinib	AcceleRET	NCT04222972	226	1:1	Platinum=based chamo +/- pembrolizumab
RET fusion	Selpercatinib	LIBRETTO-431	NCT04194944	250	1:1	Platinum-based + pemetrexed +/- pembrolizumab
<i>MET</i> ex14 skipping	Capmatinib	GeoMetry-III	NCT04427072	90	2:1	docetaxel


.

Erasmus MC

Cancer Institute zafing

The typical "right target – right drug" waterfall plot


Camidge DR, et al. Lancet Oncol. 2012;13:1011-1019; Ou SHI, et al. J Clin Oncol. 2016;34:661-668; Ramalingam S, et al. Presented at ESMO 2017. Abstract LBA2_PR.

Erasmus MC

Cancer Institute

zafing

The typical "right target – right drug" phase III PFS curve

CI, confidence interval; HR, hazard ratio; PFS, progression-free survival; SoC, standard of care. Shaw AT, et al. *N Engl J Med.* 2013;368:2385-2394; Novello, *Ann Oncol.* 2018;29:1409; Soria JC, et al. *N Engl J Med.* 2018;378:113-125.

Other mutations

Cancer Institute

Clinical equipoise, also known as **the principle of equipoise**, provides the ethical basis for medical research that involves assigning patients to different treatment arms of a clinical trial. The term was first used by Benjamin Freedman in 1987. In short, clinical equipoise means that there is genuine uncertainty in the expert medical community over whether a treatment will be beneficial.

Tumor Board Discussion

Moderator: Corey Langer, MD, FACP Case presenters: May-Lucie Meyer, MD, and Xander Verbeke, MD

Patient Case 1

May-Lucie Meyer, MD

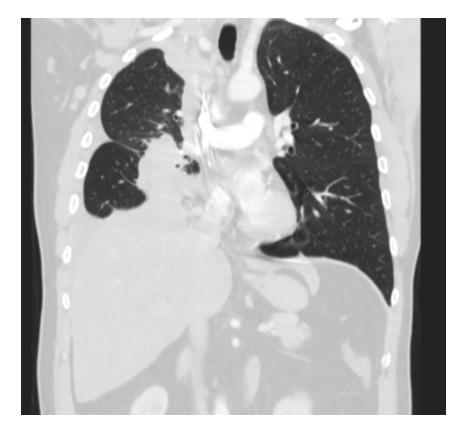
ALK

Case Presentation May-Lucie Meyer, MD Gustave Roussy, Villejuif (France)

Disclosure

• I have no conflicts of interest to declare

The Patient


- 55-year-old man, reports increasing dyspnea
 - Arterial hypertension
 - Occasional smoker, <10 packs/year
 - Familial history: brother with pleural mesothelioma
 - No asbestos exposure
 - Lives in Martinique

Clinical Exam

- PS 0, good general condition
- Normal vital signs, SpO2 95% breathing air
- Physiologic auscultation, no palpable adenopathy

CT Scan September 15, 2020

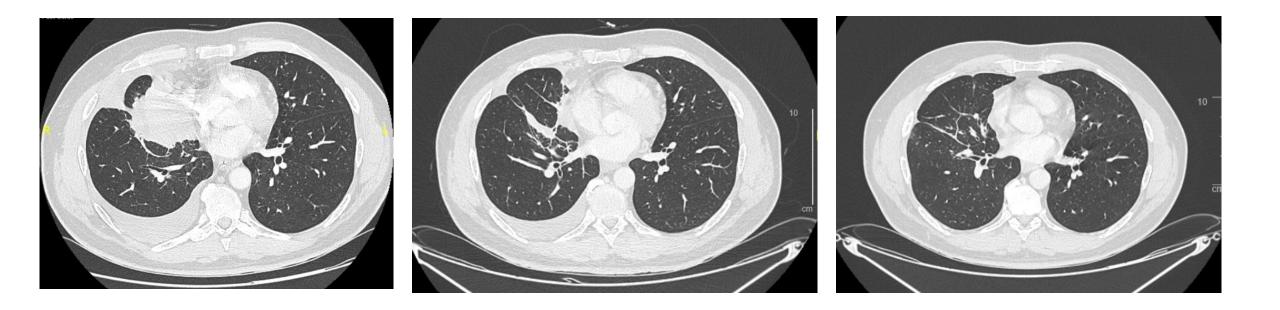
- PET-CT showed lung, pleural, nodal, and bone lesions
- Normal brain MRI

Fibroscopy and Biopsy October 20, 2020

• Adenocarcinoma, TTF-1 positive, ALK positive, PD-L1 negative

Diagnosis

 Lung adenocarcinoma, T4N3M1c, stage IV, ALK positive on IHC, PD-L1 negative



- Start chemotherapy + immunotherapy
- Start TKI
- Start 2 cycles of chemotherapy doublet, ask for molecular biology, and adapt
- Wait for molecular biology before starting any treatment

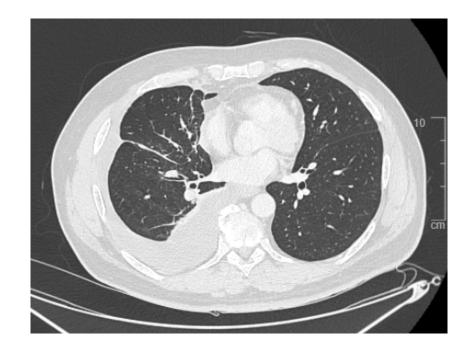
First-Line Treatment

- Alectinib 600 mg bid, started October 30, 2020
- Good tolerance
- Toxicities: asthenia G1, photosensitivity G1

Evolution on Alectinib

September 22, 2020

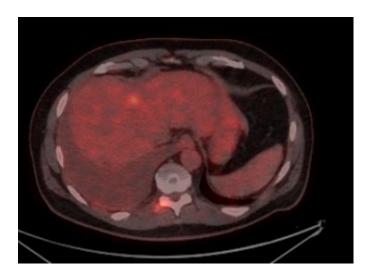
December 23, 2020


May 17, 2021

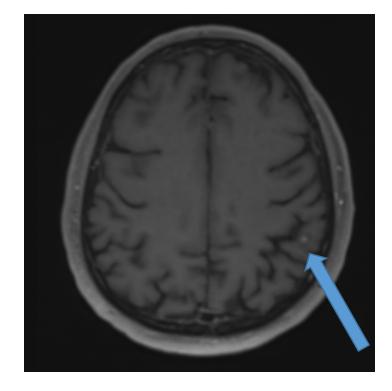
After 18 Months of Treatment. . .

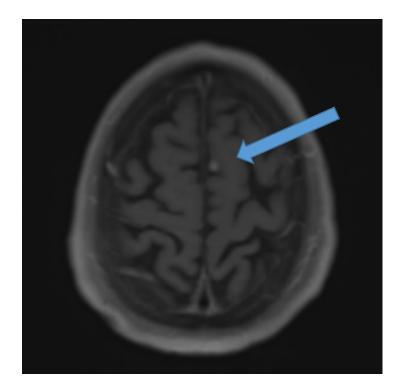
• Patient still in good general condition, but reports cough grade 1

After 18 Months of Treatment. . . .


May 17, 2021 (nadir)

April 27, 2022


PET-CT May 13, 2022



Brain MRI May 13, 2022

Liquid Biopsy May 12, 2022

FoundationOne NGS assay

Genomic Signatures

Blood Tumor Mutational Burden - O Muts/Mb Microsatellite status - MSI-High Not Detected Tumor Fraction - Elevated Tumor Fraction Not Detected

Gene Alterations

For a complete list of the genes assayed, please refer to the Appendix.

ALK EML4-ALK fusion

Report Highlights

- Targeted therapies with NCCN categories of evidence in this tumor type: Alectinib (p. <u>6</u>), Brigatinib (p. <u>6</u>), Ceritinib (p. <u>7</u>), Crizotinib (p. <u>8</u>), Lorlatinib (p. <u>9</u>)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. <u>10</u>)

- Continue alectinib; radiation to bone, liver, and brain lesions
- Stop alectinib, start lorlatinib
- Stop alectinib, start lorlatinib, and radiation to the brain
- Stop alectinib, start chemotherapy

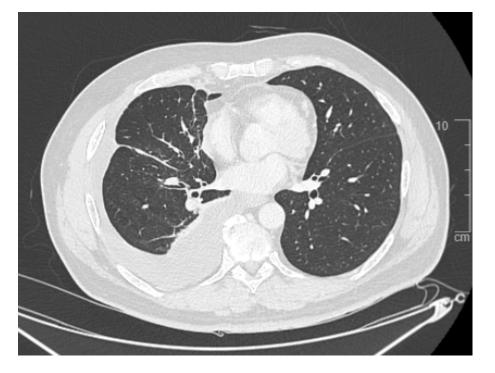
What We Did

• Lorlatinib 100 mg started on June 1, 2022

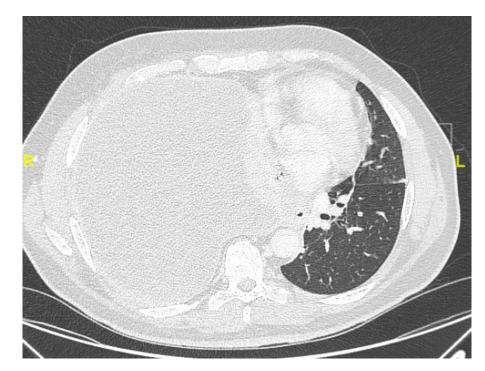
After 3 Weeks of Treatment

- Decrease of cough and dyspnea
- Visual hallucinations, depression with suicidal thought

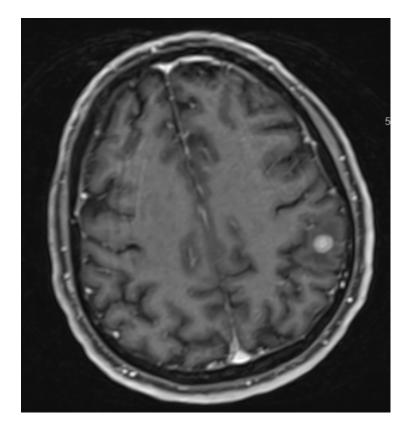
How Do You Adapt the Treatment?

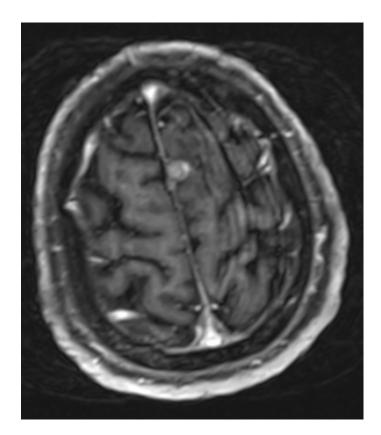

- Stop lorlatinib, refer to psychiatrist, wait for approval to start again at 50 mg
- Stop lorlatinib, restage, and consider chemotherapy
- Decrease dose to 50 mg/d, refer to psychiatrist
- Continue at 100 mg/d, refer to psychiatrist

After 2 Months of Lorlatinib


- Patient reports an increasing dyspnea
- Clinical exam: PS 2, auscultation with no sound on the right chest
- Patient was transferred to the emergency department

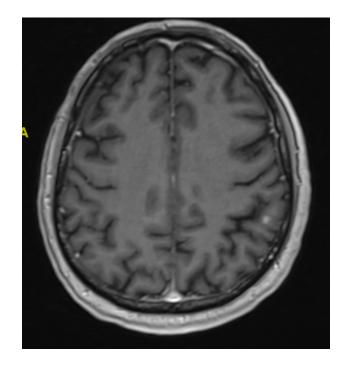
After 2 Months of Lorlatinib

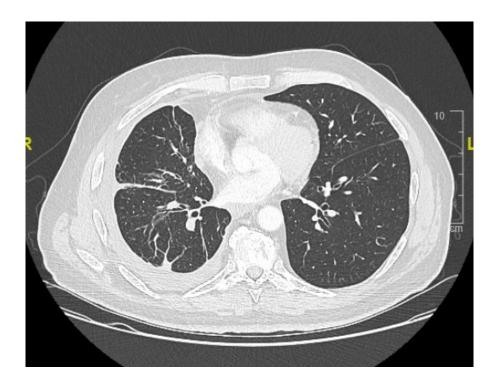

April 27, 2022



July 25, 2022

Brain MRI July 24, 2022




Third-Line Treatment

- Carboplatin AUC 5 and pemetrexed 500 mg/m²
- C1D1 August 10, 2022

After 4 Cycles of Chemotherapy

• Partial response on brain, lung, liver, bone

- Pemetrexed maintenance
- Returned to Martinique, next evaluation in December

Fusion *EMLA4-ALK* + fusion *ST7-MET* on the last bone biopsy

Next lines? Possible role of crizotinib (alone or in combination) Clinical trial with fourth-generation ALK inhibitors Taxanes

Thank you!

Patient Case 2

Xander Verbeke, MD

Global Lung Cancer Academy

Dr Xander Verbeke

University Hospital of Leuven

November 14, 2022

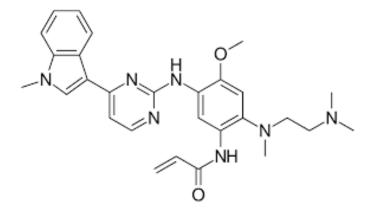
Case Presentation

Patient characteristics

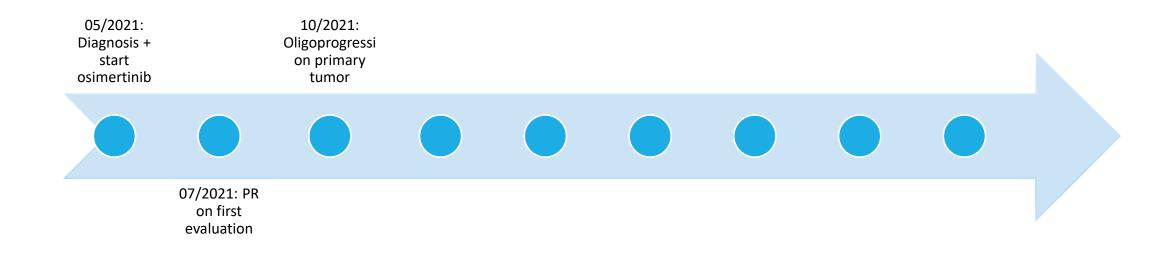
- 58-year-old man
- Second opinion
- History of degenerative lumbar disease
- Substance abuse
 - Never-smoker
 - Drinks half a bottle of wine a day (at time of diagnosis)
- No medication
- Profession
 - Butcher

First presentation

• May 2021: worsening of lower-back pain in the last 3 months


Tissue Is the Issue

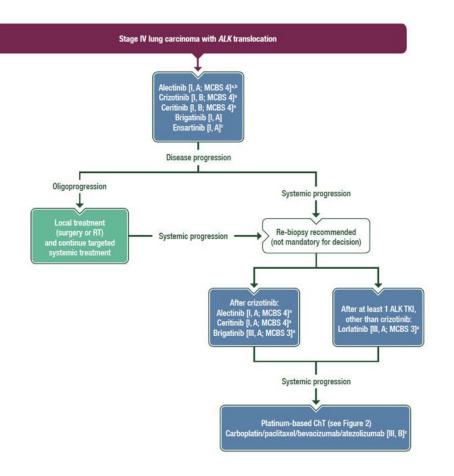
Tissue sampling


- LN7 and LN10R
 - TTF1 positive, p40 negative
 - PD-L1 0%, ALK and ROS1 negative
 - NGS: EGFR exon 19 del and TP53 mutation

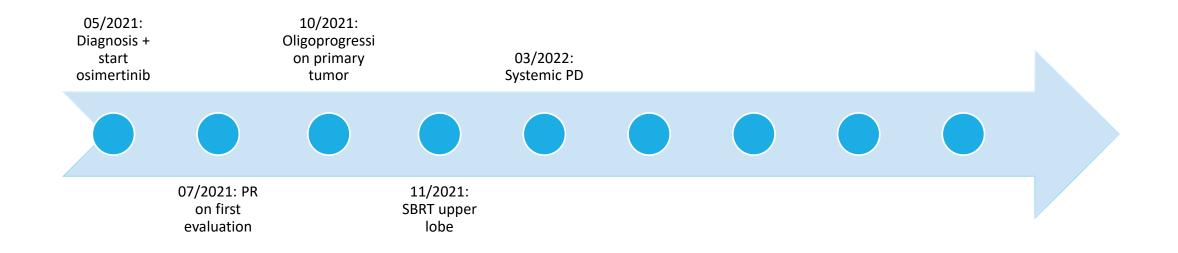
EGFR positive cT2a pN2 cM1c – stage IVb nonsquamous NSCLC

Start first-line osimertinib

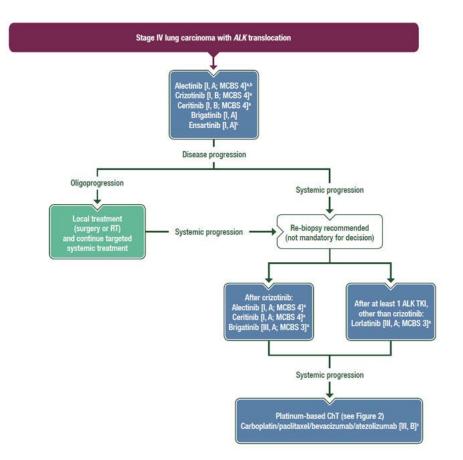
First-Line Therapy: Oligoprogression


What is your next step?

- 1. Switch to platinum doublet
- 2. Switch to platinum doublet + PD-L1/PD-1 inhibitor
- 3. Switch to a different TKI
- 4. Rebiopsy tumor
- 5. SBRT on the primary tumor and continue osimertinib


Q1 – Answer

What is your next step?

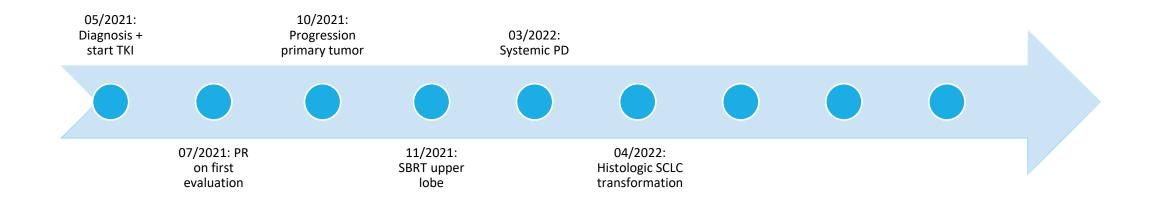

- **1**. Switch to platinum doublet
- 2. Switch to platinum doublet + PD-L1/PD-1 inhibitor
- 3. Switch to a different TKI
- 4. Rebiopsy tumor
- 5. SBRT on the primary tumor and continue osimertinib

First-Line Therapy: Systemic PD

Systemic PD

Systemic PD: Rebiopsy

New biopsy (liver)


Synaptophysin positive Chromogranin positive Ki67 90%

EGFR mutant – exon 19 del

 \rightarrow Histologic transformation to SCLC

EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes

Nicolas Marcoux, MD^{1,12}; Scott N. Gettinger, MD²; Grainne O'Kane, MD³; Kathryn C. Arbour, MD⁴; Joel W. Neal, MD⁵; Hatim Husain, MD⁶; Tracey L. Evans, MD^{7,13}; Julie R. Brahmer, MD⁸; Alona Muzikansky, MA¹; Philip D. Bonomi, MD⁹; Salvatore del Prete, MD¹⁰; Anna Wurtz, BS²; Anna F. Farago, MD, PhD¹; Dora Dias-Santagata, PhD¹; Mari Mino-Kenudson, MD¹; Karen L. Reckamp, MD¹¹; Helena A. Yu, MD⁴; Heather A. Wakelee, MD⁵; Frances A. Shepherd, MD³; Zofia Piotrowska, MD¹; and Lecia V. Sequist, MD, MPH¹

EGFR-Positive Transformation to SCLC

Resistance to EGFR TKI is well known

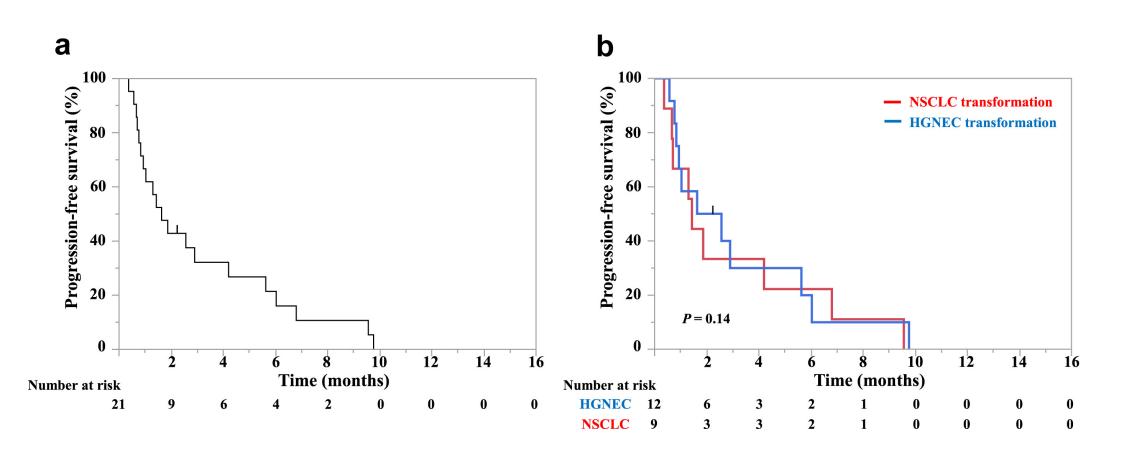
• *T790M*, c-*MET*...

Transformation to SCLC

- Rare: 3%–10% of all patients who develop resistance to TKI
 - Phenotypic switch or SCLC + NSCLC at baseline?
- EGFR founder mutation often maintained after transformation
- Can occur at any time of the disease (~16–20 mo)
 - Longer interval to transformation in *EGFR* wild-type NSCLC (~26 mo)
- Risk: TP53 and/or RB1 mutation
 - *EGFR/TP53/RB1* positive
 - ~43 × higher risk of SCLC transformation vs EGFR positive, TP53 negative, RB1 negative
 - Shorter time to discontinuation of TKI vs *EGFR/TP53* positive and *EGFR* positive only
 - Transformation likely a clonal evolution event

What is your choice of therapy?

- 1. PD-L1/PD-1 inhibitor
- 2. Platinum-etoposide
- 3. Platinum-etoposide + PD-L1/PD-1 inhibitor
- 4. Platinum-etoposide + continuation of osimertinib
- 5. Best supportive care

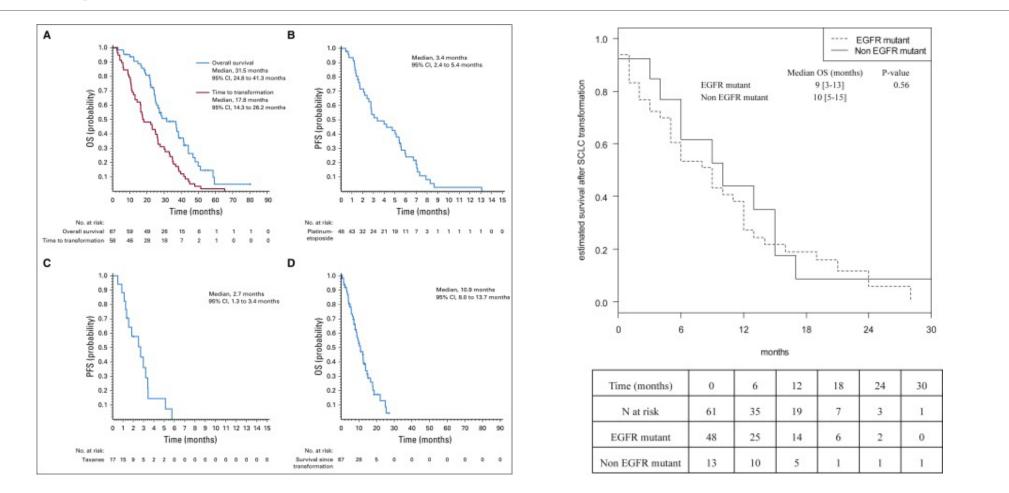

EGFR-Positive HT to SCLC: Treatment

Therapy Received	No. (%)
Received before transformation to SCLC	n = 58
EGFR TKI	58 (100)
Erlotinib	49 (84)
Afatinib	13 (22)
Third-generation EGFR TKI	19 (33)
Osimertinib	18 (31)
Investigational	5 (9)
Checkpoint inhibitor	4 (7)
Cytotoxic chemotherapy	21 (36)
Platinum-doublet regimens	20 (34)
Bevacizumab	9 (16)
Received after SCLC transformation (or after diagnosis for de novo SCLC)	n = 65*
Cytotoxic chemotherapy	63 (97)
Platinum-etoposide	53 (82)
Other platinum-combination	7 (11)
Taxane	21 (32)
Campthotecin (topotecan, irinotecan)	12 (18)
Temozolamide	4 (6)
EGFR TKI	34 (52)
Checkpoint inhibitor	17 (26)
PD-1 or PD-L1 monotherapy	9 (14)
lpilumumab plus nivolumab	8 (12)

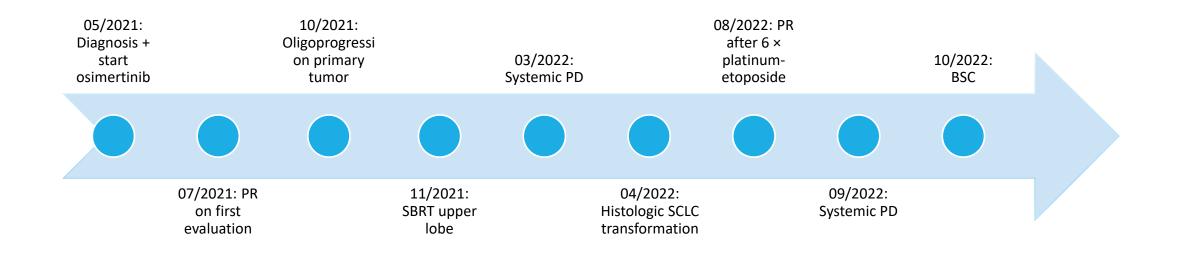
Received after transformation to HGNEC, n (%)	Patients ($n = 59$)
Cytotoxic chemotherapy (not including immunotherapy)	51 (86)
Immune checkpoint inhibitors	12 (20)
PD-1/PD-L1 inhibitor monotherapy	7 (12)
Nivolumab + ipilimumab	1 (2)
Platinum-doublet + PD-1/PD-L1 inhibitor	4 (7)
EGFR-TKI rechallenge	21 (36)
No anticancer therapy	5 (8)
Received after transformation to another NSCLC subtype, n (%)	Patients ($n = 15$)
Cytotoxic chemotherapy (not including immunotherapy)	9 (60)
Immune checkpoint inhibitors	9 (60)
PD-1/PD-L1 inhibitor monotherapy	7 (47)
Platinum-doublet + PD-1/PD-L1 inhibitor	2 (13)
EGFR-TKI rechallenge	5 (33)
No anticancer therapy	1 (7)

EGFR, epidermal growth factor receptor; HGNEC, high-grade neuroendocrine carcinoma; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor.

EGFR-Positive HT to SCLC: ICI



Q2 – Answer


What is your choice of therapy?

- 1. PD-L1/PD-1 inhibitor
- 2. Platinum-etoposide
- 3. Platinum-etoposide + PD-L1/PD-1 inhibitor
- 4. Platinum-etoposide + continuation of osimertinib
- 5. Best supportive care

EGFR-Positive Transformation to SCLC: Prognosis

Back to the Case

References

- Ferrer L, et al. J Thorac Oncol. 2019;14:130-134.
- Fujimoto D, et al. *Eur J Cancer*. 2022;166:41-50.
- •Lee JK, et al. J Clin Oncol. 35:3065-3078, 2017.
- Marcoux N, et al. J Clin Oncol. 2019;37:278-285.
- •Offin M, et al. J Thorac Oncol. 2019;14:1784-1793.
- •Planchard D, et al. Ann Oncol. 2018;29(Suppl 4):iv192-iv237.

Tumor Board Discussion

Moderator: Corey Langer, MD, FACP All faculty

Session Close

Solange Peters, MD

Meeting evaluation

> Please complete the evaluation link that will be sent to you via chat

56-year-old male, heavy former tobacco enthusiast (50 pk/yr) presents with cough and pleuritic chest pain. CXR shows L pleural effusion and L hilar mass, confirmed on CT, which also discloses mediastinal LAD and a L adrenal mass measuring 3 cm. Pleural fluid cytology demonstrates adenocarcinoma, TTF1 positive. Cell block is sufficient for NGS testing; this proves positive for *KRAS* G12C mutation. PD-L1 is positive but at low level (10%). Brain MRI proves negative. Patient is treated with the KN-189 regimen (combination pemetrexed, carboplatin, and pembrolizumab) and sustains a PR with resolution of the L pleural effusion and shrinkage in the primary lung mass, mediastinal LAD, and L adrenal lesion. Scans after cycle 8 of maintenance pemetrexed + pembrolizumab show growth in the L adrenal mass and new hepatic lesions, all of which prove "hot" on PET. Which of the following would NOT be appropriate therapy in the second-line setting?

- 1. Sotorasib
- 2. Adagrasib
- 3. Selpercatinib
- 4. Combination ramucirumab and pembrolizumab

Thank you!

- >Thank you to our sponsor, expert presenters, and to you for your participation
- > Please complete the evaluation link that will be sent to you via chat
- >The meeting recording and slides presented today will be shared on the globallungcanceracademy.com website within a few weeks
- If you have a question for any of our experts that was not answered today, you can submit it through the GLCA website in our Ask the Experts section

Global Lung Cancer Academy

Sharing Best Practices to Optimize Patient Care

Sponsor: Sanofi Oncology & Regeneron

